Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Visual attention paradigms have revealed that neural excitability in higher-order visual areas is modulated according to a priority map guiding attention towards task-relevant locations. Neural activity in early visual regions, however, has been argued to be modulated based on bottom-up salience. Here, we combined Magnetoencephalography (MEG) and Rapid Invisible Frequency Tagging (RIFT) in a classic visual search paradigm to study feature-guidance in early human visual cortex. Our results demonstrate evidence for both target boosting and distractor suppression when the participants were informed about the task-relevant and -irrelevant colour (guided search) compared to when they were not (unguided search). These results conceptually replicated using both a magnitude-squared coherence approach and a General Linear Model based on a single-trial measure of the RIFT response. The present findings reveal that feature-guidance in visual search affects neuronal excitability as early as primary visual cortex, possibly contributing to a priority-map-based mechanism.

Original publication

DOI

10.1038/s42003-025-08321-3

Type

Journal article

Journal

Communications biology

Publication Date

06/2025

Volume

8

Addresses

Department of Neuroscience, Brown University, Providence, RI, USA. katharina.duecker@gmail.com.

Keywords

Visual Cortex, Humans, Magnetoencephalography, Photic Stimulation, Visual Perception, Attention, Adult, Female, Male, Young Adult