Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Cerebral microbleeds (CMBs) are a neuroimaging marker of small vessel disease (SVD) with relevance for understanding disease mechanisms in cerebrovascular disease, cognitive impairment, and normal aging. It is hypothesized that lobar CMBs are due to cerebral amyloid angiopathy (CAA) and deep CMBs are due to subcortical ischemic SVD. We tested this hypothesis using structural magnetic resonance imaging (MRI) markers of subcortical SVD and in vivo imaging of amyloid in patients with cognitive impairment. METHODS: We included 226 patients: 89 with Alzheimer disease-related cognitive impairment (ADCI) and 137 with subcortical vascular cognitive impairment (SVCI). All subjects underwent amyloid imaging with [(11) C] Pittsburgh compound B (PiB) positron emission tomography, and MRI to detect CMBs and markers of subcortical SVD, including the volume of white matter hyperintensities (WMH) and the number of lacunes. RESULTS: Parietal and occipital lobar CMBs counts were higher in PiB(+) ADCI with moderate WMH than PiB(+) ADCI with minimal WMH, whereas PiB(-) patients with SVCI (ie, "pure" SVCI) showed both lobar and deep CMBs. In multivariate analyses of the whole cohort, WMH volume and lacuna counts were positively associated with both lobar and deep CMBs, whereas amyloid burden (PiB) was only associated with lobar CMBs. There was an interaction between lacuna burden and PiB retention on lobar (but not deep) CMBs (p<0.001). INTERPRETATION: Our findings suggest that although deep CMBs are mainly linked to subcortical SVD, both subcortical SVD and amyloid-related pathologies (eg, CAA) contribute to the pathogenesis of lobar CMBs, at least in subjects with mixed lobar and deep CMBs. Furthermore, subcortical SVD and amyloid-related pathologies interact to increase the risk of lobar CMBs.

Original publication

DOI

10.1002/ana.23845

Type

Journal article

Journal

Ann Neurol

Publication Date

05/2013

Volume

73

Pages

584 - 593

Keywords

Aged, Aged, 80 and over, Alzheimer Disease, Amyloid, Aniline Compounds, Cerebral Amyloid Angiopathy, Cerebral Hemorrhage, Cognition Disorders, Female, Humans, Linear Models, Magnetic Resonance Imaging, Male, Middle Aged, Positron-Emission Tomography, Stroke, Lacunar, Thiazoles