Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015 Elsevier Ltd. Slowness of thought is not necessarily a handicap but could be a signature of optimal brain function. Emerging evidence shows that neuroanatomical and dynamical constraints of the human brain shape its functionality in optimal ways, characterized by slowness during task-based cognition in the context of spontaneous resting-state activity. This activity can be described mechanistically by whole-brain computational modeling that relates directly to optimality in the context of theories arguing for metastability in the brain. We discuss the role for optimal processing of information in the context of cognitive, task-related activity, and propose that combining multi-modal neuroimaging and explicit whole-brain models focused on the timing of functional dynamics can help to uncover fundamental rules of brain function in health and disease. The dynamics of the human brain exhibits 'slowness' during spontaneous activity and task-based cognition.Whole-brain computational modeling can account for the mechanisms underlying this slowness in terms of maximal metastability of the dynamical system.A better understanding of the balance between fast and slow brain processing could lead to fundamental new insights into the brain in health and disease.

Original publication

DOI

10.1016/j.tics.2015.07.011

Type

Journal article

Journal

Trends in Cognitive Sciences

Publication Date

01/01/2015

Volume

19

Pages

616 - 628