Search results
Found 18567 matches for
A Bayesian analysis of diagnostic timelines across Alzheimer's disease, frontotemporal dementia, and other neurodegenerative conditions
INTRODUCTION: Timely diagnosis is crucial for managing neurodegenerative conditions. This study investigated whether time from symptom onset to diagnosis differs by clinical syndrome and sex. METHODS: This retrospective, cross-sectional study included 591 participants with Alzheimer's disease (AD), frontotemporal dementia (FTD) subtypes (behavioral variant FTD [bvFTD], semantic dementia [SD], and progressive non-fluent aphasia), logopenic progressive aphasia (LPA), and syndromes associated with movement disorders (corticobasal syndrome, FTD with motor neuron disease [FTD-MND], and progressive supranuclear palsy). Bayesian regression models were used to compute diagnostic timelines. RESULTS: Compared to AD (3.35 years; 95% credible interval [CrI]: 3.03–3.72), SD and bvFTD had additional delays of 9.7 (95% CrI: 1.96–20.64) and 14.82 months (95% CrI: 6.94–25.42), respectively, while FTD-MND was shorter by 11.62 months (95% CrI: −15.7 to −4.68). Men with bvFTD had 23.64 month longer delays than women (95% CrI: 10.35–44.33). DISCUSSION: Diagnostic delays may reflect syndrome-specific clinical features, diagnostic complexity, and sociocultural factors. Findings highlight the need for improved diagnostic pathways and pre-clinical biomarkers to facilitate earlier identification. Highlights: Bayesian analyses revealed that diagnostic delays differ by syndrome and sex. Alzheimer's disease (AD) was diagnosed on average 3.35 years after symptom onset. Diagnoses were delayed in semantic and behavioral variant frontotemporal dementia (bvFTD) compared to AD. Men with bvFTD had longer delays than women. Findings support need for improved diagnostic pathways and pre-clinical biomarkers.
Menopausal hormone therapy and the female brain: leveraging neuroimaging and prescription registry data from the UK Biobank cohort.
BACKGROUND AND OBJECTIVES: Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in middle- to older aged females from the UK Biobank, assessing detailed MHT data, APOE ε4 genotype, and tissue-specific gray (GM) and white matter (WM) brain age gap (BAG), as well as hippocampal and white matter hyperintensity (WMH) volumes. METHODS: A total of 19,846 females with magnetic resonance imaging data were included (current-users = 1,153, 60.1 ± 6.8 years; past-users = 6,681, 67.5 ± 6.2 years; never-users = 12,012, mean age 61.6 ± 7.1 years). For a sub-sample (n = 538), MHT prescription data was extracted from primary care records. Brain measures were derived from T1-, T2- and diffusion-weighted images. We fitted regression models to test for associations between the brain measures and MHT variables including user status, age at initiation, dosage and duration, formulation, route of administration, and type (i.e., bioidentical vs synthetic), as well as active ingredient (e.g., estradiol hemihydrate). We further tested for differences in brain measures among MHT users with and without a history of hysterectomy ± bilateral oophorectomy and examined associations by APOE ε4 status. RESULTS: We found significantly higher GM and WM BAG (i.e., older brain age relative to chronological age) as well as smaller left and right hippocampus volumes in current MHT users, not past users, compared to never-users. Effects were modest, with the largest effect size indicating a group difference of 0.77 years (~9 months) for GM BAG. Among MHT users, we found no significant associations between age at MHT initiation and brain measures. Longer duration of use and older age at last use post menopause was associated with higher GM and WM BAG, larger WMH volume, and smaller left and right hippocampal volumes. MHT users with a history of hysterectomy ± bilateral oophorectomy showed lower GM BAG relative to MHT users without such history. Although we found smaller hippocampus volumes in carriers of two APOE ε4 alleles compared to non-carriers, we found no interactions with MHT variables. In the sub-sample with prescription data, we found no significant associations between detailed MHT variables and brain measures after adjusting for multiple comparisons. DISCUSSION: Our results indicate that population-level associations between MHT use, and female brain health might vary depending on duration of use and past surgical history. Future research is crucial to establish causality, dissect interactions between menopause-related neurological changes and MHT use, and determine individual-level implications to advance precision medicine in female health care.
Dimensions of Early-Life Adversity Are Differentially Associated With Patterns of Delayed and Accelerated Brain Maturation.
BACKGROUND: Different types of early-life adversity (ELA) have been associated with children's brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge. METHODS: This study investigates the neural correlates of 10 robust dimensions of ELA identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development Study. Brain age models were trained, validated, and tested separately on T1-weighted (n = 9524), diffusion tensor (n = 8834), and resting-state functional (n = 8233) magnetic resonance imaging data from two time points (mean age = 10.7 years, SD = 1.2, age range = 8.9-13.8 years). RESULTS: Bayesian multilevel modeling supported distinct associations between different types of ELA exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support and lack of caregiver supervision, were associated with lower brain age gaps, i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socioeconomic disadvantage and neighborhood safety were associated with higher brain age gaps, i.e., older-looking brains. CONCLUSIONS: The findings suggest that dimensions of ELA are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.
Sex-Dependent Effects of Cardiometabolic Health and APOE4 on Brain Age: A Longitudinal Cohort Study.
BACKGROUND AND OBJECTIVES: The aging population is growing faster than all other demographic strata. With older age comes a greater risk of health conditions such as obesity and high blood pressure (BP). These cardiometabolic risk factors (CMRs) exhibit prominent sex differences in midlife and aging, yet their influence on brain health in females vs males is largely unexplored. In this study, we investigated sex differences in relationships between BP, body mass index (BMI), and brain age over time and tested for interactions with APOE ε4 genotype (APOE4), a known genetic risk factor of Alzheimer disease. METHODS: The sample included participants from 2 United Kingdom-based longitudinal birth cohorts, the Lothian Birth Cohort (1936) and Insight 46 (1946). Participants with MRI data from at least 1 time point were included to evaluate sex differences in associations between CMRs and brain age. The open-access software package brainageR 2.1 was used to estimate brain age for each participant. Linear mixed-effects models were used to assess the relationships between brain age, BMI, BP, and APOE4 status (i.e., carrier vs noncarrier) in males and females over time. RESULTS: The combined sample comprised 1,120 participants (48% female) with a mean age (SD) of 73 (0.72) years in the Lothian Birth Cohort and 71 (0.68) years in Insight 46 at the time point 1 assessment. Approximately 30% of participants were APOE4 carriers. Higher systolic and diastolic BP was significantly associated with older brain age in females only (β = 0.43-0.56, p < 0.05). Among males, higher BMI was associated with older brain age across time points and APOE4 groups (β = 0.72-0.77, p < 0.05). In females, higher BMI was linked to older brain age among APOE4 noncarriers (β = 0.68-0.99, p < 0.05), whereas higher BMI was linked to younger brain age among carriers, particularly at the last time point (β = -1.75, p < 0.05). DISCUSSION: This study indicates sex-dependent and time-dependent relationships between CMRs, APOE4 status, and brain age. Our findings highlight the necessity of sex-stratified analyses to elucidate the role of CMRs in individual aging trajectories, providing a basis for developing personalized preventive interventions.
Linking menopause-related factors, history of depression, APOE ε4, and proxies of biological aging in the UK biobank cohort.
In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.
Parental status and markers of brain and cellular age: A 3D convolutional network and classification study.
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain and cellular ageing in 36,323 UK Biobank participants (age range 44.57-82.06 years; 52% female). To assess global effects of parenting on the brain, we trained a 3D convolutional neural network on T1-weighted magnetic resonance images, and estimated brain age in a held-out test set. To investigate regional specificity, we extracted cortical and subcortical volumes using FreeSurfer, and ran hierarchical clustering to group regional volumes based on covariance. Leukocyte telomere length (LTL) derived from DNA was used as a marker of cellular ageing. We employed linear regression models to assess relationships between number of children, brain age, regional brain volumes, and LTL, and included interaction terms to probe sex differences in associations. Lastly, we used the brain measures and LTL as features in binary classification models, to determine if markers of brain and cellular ageing could predict parental status. The results showed associations between a greater number of children born/fathered and younger brain age in both females and males, with stronger effects observed in females. Volume-based analyses showed maternal effects in striatal and limbic regions, which were not evident in fathers. We found no evidence for associations between number of children and LTL. Classification of parental status showed an Area under the ROC Curve (AUC) of 0.57 for the brain age model, while the models using regional brain volumes and LTL as predictors showed AUCs of 0.52. Our findings align with previous population-based studies of middle- and older-aged parents, revealing subtle but significant associations between parental experience and neuroimaging-based surrogate markers of brain health. The findings further corroborate results from longitudinal cohort studies following parents across pregnancy and postpartum, potentially indicating that the parenthood transition is associated with long-term influences on brain health.
An evolutionary timeline of the oxytocin signaling pathway.
Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.
Recommendations for a Better Understanding of Sex and Gender in the Neuroscience of Mental Health.
There are prominent sex/gender differences in the prevalence, expression, and life span course of mental health and neurodiverse conditions. However, the underlying sex- and gender-related mechanisms and their interactions are still not fully understood. This lack of knowledge has harmful consequences for those with mental health problems. Therefore, we set up a cocreation session in a 1-week workshop with a multidisciplinary team of 25 researchers, clinicians, and policy makers to identify the main barriers in sex and gender research in the neuroscience of mental health. Based on this work, here we provide recommendations for methodologies, translational research, and stakeholder involvement. These include guidelines for recording, reporting, analysis beyond binary groups, and open science. Improved understanding of sex- and gender-related mechanisms in neuroscience may benefit public health because this is an important step toward precision medicine and may function as an archetype for studying diversity.
Brain asymmetries from mid- to late life and hemispheric brain age.
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Bio-psycho-social factors' associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants.
Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6-82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions' influence on brain age in future studies.
Sex steroids and the female brain across the lifespan: insights into risk of depression and Alzheimer's disease.
Despite widespread sex differences in prevalence and presentation of numerous illnesses affecting the human brain, there has been little focus on the effect of endocrine ageing. Most preclinical studies have focused on males only, and clinical studies often analyse data by covarying for sex, ignoring relevant differences between the sexes. This sex- (and gender)-neutral approach is biased and contributes to the absence of targeted treatments and services for all sexes (and genders). Female health has been historically understudied, with grave consequences for their wellbeing and health equity. In this Review, we spotlight female brain health across the lifespan by informing on the role of sex steroids, particularly oestradiol, on the female brain and on risk for diseases more prevalent in females, such as depression and Alzheimer's disease.
Sex and gender in health research: intersectionality matters.
Research policies aiming to integrate sex and gender in scientific studies are receiving increased attention in academia. Incorporating these policies into health research is essential for improving targeted and equitable healthcare outcomes, by considering both disparities and similarities between individuals relating to sex and gender. Although these efforts are both urgent and critical, only an intersectional approach, which considers broad and multidimensional aspects of an individual's identity, can provide a complete understanding of the factors that impact health. In this commentary, we emphasize that it is crucial to examine how sex and gender intersect with factors such as culture, ethnicity, minority status, and socioeconomic conditions to influence health outcomes. To approach health equity, we must consider disparities linked to both biological and environmental factors, in order to facilitate evidence-based health interventions with tangible impact.
Brain-wide associations between white matter and age highlight the role of fornix microstructure in brain ageing.
Unveiling the details of white matter (WM) maturation throughout ageing is a fundamental question for understanding the ageing brain. In an extensive comparison of brain age predictions and age-associations of WM features from different diffusion approaches, we analyzed UK Biobank diffusion magnetic resonance imaging (dMRI) data across midlife and older age (N = 35,749, 44.6-82.8 years of age). Conventional and advanced dMRI approaches were consistent in predicting brain age. WM-age associations indicate a steady microstructure degeneration with increasing age from midlife to older ages. Brain age was estimated best when combining diffusion approaches, showing different aspects of WM contributing to brain age. Fornix was found as the central region for brain age predictions across diffusion approaches in complement to forceps minor as another important region. These regions exhibited a general pattern of positive associations with age for intra axonal water fractions, axial, radial diffusivities, and negative relationships with age for mean diffusivities, fractional anisotropy, kurtosis. We encourage the application of multiple dMRI approaches for detailed insights into WM, and the further investigation of fornix and forceps as potential biomarkers of brain age and ageing.
Genetic architecture of brain age and its causal relations with brain and mental disorders.
The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p
Shared pattern of impaired social communication and cognitive ability in the youth brain across diagnostic boundaries.
BACKGROUND: Abnormalities in brain structure are shared across diagnostic categories. Given the high rate of comorbidity, the interplay of relevant behavioural factors may also cross these classic boundaries. METHODS: We aimed to detect brain-based dimensions of behavioural factors using canonical correlation and independent component analysis in a clinical youth sample (n = 1732, 64 % male, age: 5-21 years). RESULTS: We identified two correlated patterns of brain structure and behavioural factors. The first mode reflected physical and cognitive maturation (r = 0.92, p = .005). The second mode reflected lower cognitive ability, poorer social skills, and psychological difficulties (r = 0.92, p = .006). Elevated scores on the second mode were a common feature across all diagnostic boundaries and linked to the number of comorbid diagnoses independently of age. Critically, this brain pattern predicted normative cognitive deviations in an independent population-based sample (n = 1253, 54 % female, age: 8-21 years), supporting the generalisability and external validity of the reported brain-behaviour relationships. CONCLUSIONS: These results reveal dimensions of brain-behaviour associations across diagnostic boundaries, highlighting potent disorder-general patterns as the most prominent. In addition to providing biologically informed patterns of relevant behavioural factors for mental illness, this contributes to a growing body of evidence in favour of transdiagnostic approaches to prevention and intervention.
Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort.
The temporal characteristics of adolescent neurodevelopment are shaped by a complex interplay of genetic, biological, and environmental factors. Using a large longitudinal dataset of children aged 9-13 from the Adolescent Brain Cognitive Development (ABCD) study we tested the associations between pubertal status and brain maturation. Brain maturation was assessed using brain age prediction based on convolutional neural networks and minimally processed T1-weighted structural MRI data. Brain age prediction provided highly accurate and reliable estimates of individual age, with an overall mean absolute error of 0.7 and 1.4 years at the two timepoints respectively, and an intraclass correlation of 0.65. Linear mixed effects (LME) models accounting for age and sex showed that on average, a one unit increase in pubertal maturational level was associated with a 2.22 months higher brain age across time points (β = 0.10, p < .001). Moreover, annualized change in pubertal development was weakly related to the rate of change in brain age (β = .047, p = 0.04). These results demonstrate a link between sexual development and brain maturation in early adolescence, and provides a basis for further investigations of the complex sociobiological impacts of puberty on life outcomes.
