Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Omega-3-polyunsaturated-fatty-acids were suggested against cognitive dysfunctions and conversion to psychosis. However, a recent multicenter trial found no effect in reducing conversion rates in individuals at risk of developing schizophrenia. Patients' genetic heterogeneity and the timing of treatment might influence omega-3 efficacy. Here, we addressed the impact of omega-3 early treatment in both mice and human subjects with a 22q11.2 genetic hemi-deletion (22q11DS), characterized by cognitive dysfunctions and high penetrance of schizophrenia. We first tested the behavioural and cognitive consequences of adolescent exposure to normal or omega-3-enriched diets in wild-type and 22q11DS (LgDel/+) mice. We then contrasted mouse data with those gathered from sixty-two patients with 22q11DS exposed to a normal diet or supplemented with omega-3 during pre-adolescence/adolescence. Adolescent omega-3 exposure had no effects in wild-type mice. However, this treatment ameliorated distractibility deficits revealed in LgDel/+ mice by the Five Choice Serial Reaction Time Task (5CSRTT). The omega-3 improvement in LgDel/+ mice was selective, as no other generalized cognitive and non-cognitive effects were evident. Similarly, omega-3-exposed 22q11DS patients showed long-lasting improvements on distractibility as revealed by the continuous performance test (CPT). Moreover, omega-3-exposed 22q11DS patients showed less risk of developing an Ultra High Risk status and lower conversion rate to psychosis. Our convergent mouse-human findings represent a first analysis on the effects of omega-3 early treatment in 22q11DS. The beneficial effects in attentional control and transition to psychosis could support the early use of omega-3 supplementation in the 22q11DS population.

Original publication

DOI

10.1016/j.neuropharm.2020.107995

Type

Journal article

Journal

Neuropharmacology

Publication Date

10/02/2020

Keywords

Adolescence, Attention, LgDel/+ mutant mice, Translational pharmacology