Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:title>ABSTRACT</jats:title><jats:p>A central question in neuroscience is how cognition and consciousness arise from human brain activity. Here, we decompose cortical dynamics of resting-state functional MRI into their constituent elements: the harmonics of the human connectome. Mapping a wide spectrum of consciousness onto these elementary brain states reveals a generalisable connectome harmonic signature of loss of consciousness, whether due to anaesthesia or severe brain injury. Remarkably, its mirror-reversed image corresponds to the harmonic signature of the psychedelic state induced by ketamine or LSD, identifying meaningful relationships between neurobiology, brain function, and conscious experience. The repertoire of connectome harmonics further provides a fine-tuned indicator of level of consciousness, sensitive to differences in anaesthetic dose and clinically relevant sub-categories of patients with disorders of consciousness. Overall, we reveal that the emergence of consciousness from human brain dynamics follows the same universal principles shared by a multitude of physical and biological phenomena: the mathematics of harmonic modes.</jats:p>

Original publication

DOI

10.1101/2020.08.10.244459

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

11/08/2020