Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ability to identify biomarkers of psychosis risk is essential in defining effective preventive measures to potentially circumvent the transition to psychosis. Using samples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who were administered a task fMRI paradigm, we used a framework for labelling time windows of fMRI scans as 'integrated' FC networks to provide a granular representation of functional connectivity (FC). Periods of integration were defined using the 'cartographic profile' of time windows and k-means clustering, and sub-network discovery was carried out using Network Based Statistics (NBS). There were no network differences between CHR and HC groups. Within the CHR group, using integrated FC networks, we identified a sub-network negatively associated with longitudinal changes in the severity of psychotic symptoms. This sub-network comprised brain areas implicated in bottom-up sensory processing and in integration with motor control, suggesting it may be related to the demands of the fMRI task. These data suggest that extracting integrated FC networks may be useful in the investigation of biomarkers of psychosis risk.

Original publication




Journal article


Hum Brain Mapp

Publication Date





439 - 451


cartographic profile, clinical high-risk for psychosis, network analysis, network based statistics, network integration, task fMRI