Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Abstract Application of Oxford Nanopore Technologies’ long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to the high sequence error and small library sizes, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore RNA-seq datasets with the goal of obtaining gene- and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs (‘sequins’) as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 was analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods for downstream analysis. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using long-read specific preprocessing methods together with short-read differential expression methods and software that are already in wide use can yield meaningful results.

Original publication

DOI

10.1093/nargab/lqab028

Type

Journal article

Journal

NAR Genomics and Bioinformatics

Publisher

Oxford University Press (OUP)

Publication Date

09/04/2021

Volume

3