Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Downstream analysis of OMICS data requires interpretation of many molecular components considering current biological knowledge. Most tools used at present for functional enrichment analysis workflows applied to the field of proteomics are either borrowed or have been modified from genomics workflows to accommodate proteomics data. While the field of proteomics data analytics is evolving, as is the case for molecular annotation coverage, one can expect the rise of enhanced databases with less redundant ontologies spanning many elements of the tree of life. The methodology described here shows in practical steps how to perform overrepresentation analysis, functional class scoring, and pathway-topology analysis using a preexisting neurological dataset of proteomic data.

Original publication

DOI

10.1007/978-1-0716-1641-3_10

Type

Journal article

Journal

Methods Mol Biol

Publication Date

2021

Volume

2361

Pages

163 - 178

Keywords

Bioinformatics, Enrichment analysis, Functional class scoring, Overrepresentation analysis, Pathway-topology, Genomics, Proteomics