Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Motivation Long-read sequencing methods have considerable advantages for characterizing RNA isoforms. Oxford Nanopore sequencing records changes in electrical current when nucleic acid traverses through a pore. However, basecalling of this raw signal (known as a squiggle) is error prone, making it challenging to accurately identify splice junctions. Existing strategies include utilizing matched short-read data and/or annotated splice junctions to correct nanopore reads but add expense or limit junctions to known (incomplete) annotations. Therefore, a method that could accurately identify splice junctions solely from nanopore data would have numerous advantages. Results We developed ‘NanoSplicer’ to identify splice junctions using raw nanopore signal (squiggles). For each splice junction, the observed squiggle is compared to candidate squiggles representing potential junctions to identify the correct candidate. Measuring squiggle similarity enables us to compute the probability of each candidate junction and find the most likely one. We tested our method using (i) synthetic mRNAs with known splice junctions and (ii) biological mRNAs from a lung-cancer cell-line. The results from both datasets demonstrate NanoSplicer improves splice junction identification, especially when the basecalling error rate near the splice junction is elevated. Availability and implementation NanoSplicer is available at https://github.com/shimlab/NanoSplicer and archived at https://doi.org/10.5281/zenodo.6403849. Data is available from ENA: ERS7273757 and ERS7273453. Supplementary information Supplementary data are available at Bioinformatics online.

Original publication

DOI

10.1093/bioinformatics/btac359

Type

Journal article

Journal

Bioinformatics

Publisher

Oxford University Press (OUP)

Publication Date

27/05/2022