Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Complex human traits such as chronic kidney disease (CKD) are a major health and financial burden in modern societies. Currently, the description of the CKD onset and progression at the molecular level is still not fully understood. Meanwhile, the prolific use of high-throughput omic technologies in disease biomarker discovery studies yielded a vast amount of disjointed data that cannot be easily collated. Therefore, we aimed to develop a molecule-centric database featuring CKD-related experiments from available literature publications. We established the Chronic Kidney Disease database CKDdb, an integrated and clustered information resource that covers multi-omic studies (microRNAs, genomics, peptidomics, proteomics and metabolomics) of CKD and related disorders by performing literature data mining and manual curation. The CKDdb database contains differential expression data from 49395 molecule entries (redundant), of which 16885 are unique molecules (non-redundant) from 377 manually curated studies of 230 publications. This database was intentionally built to allow disease pathway analysis through a systems approach in order to yield biological meaning by integrating all existing information and therefore has the potential to unravel and gain an in-depth understanding of the key molecular events that modulate CKD pathogenesis.

Original publication

DOI

10.1038/srep40367

Type

Journal article

Journal

Scientific Reports

Publication Date

12/01/2017

Volume

7