Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females. In contrast, the AgNosCd-1 drive (nos-Cas9) in Anopheles gambiae achieves almost complete allelic conversion through both genders. Here, we examined the subcellular localization of RNA transcripts in the mosquito germline. In both transgenic lines, Cas9 is strictly coexpressed with endogenous genes in stem and premeiotic cells of the testes, where both drives display highly efficient conversion. However, we observed distinct colocalization patterns for the two drives in female reproductive tissues. These studies suggest potential determinants underlying efficient drive through the female germline. We also evaluated expression patterns of alternative germline genes for future gene-drive designs.

Original publication




Journal article


G3 (Bethesda)

Publication Date





Anopheles , gambiae , in situ , nanos , stephensi , vasa , CRISPR, Cas9, FISH, active genetics, expression, gene drive, microscopy, Animals, Anopheles, CRISPR-Cas Systems, Female, Gene Drive Technology, Germ Cells, Male, Mosquito Vectors