Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent advances in mosquito genomics and genetic engineering technologies have fostered a need for quick and efficient methods for detecting targeted DNA sequence variation on a large scale. Specifically, detecting insertions and deletions (indels) at gene-edited sites generated by CRISPR guide RNA (gRNA)/Cas9-mediated non-homologous end-joining (NHEJ) is important for assessing the fidelity of the mutagenesis and the frequency of unintended changes. We describe here a protocol for digital-droplet PCR (ddPCR) that is well-suited for high-throughput NHEJ analysis. While this method does not produce data that identifies individual sequence variation, it provides a quantitative estimate of the sequence variation within a population. Additionally, with appropriate resources, this protocol can be implemented in a field-site laboratory setting more easily than next-generation or Sanger sequencing. ddPCR also has a faster turn-around time for results than either of those methods, which allows a more quick and complete analysis of genetic variation in wild populations during field trials of genetically-engineered organisms.

Original publication

DOI

10.3791/62607

Type

Journal article

Journal

J Vis Exp

Publication Date

28/06/2021

Keywords

Animals, CRISPR-Cas Systems, Culicidae, Gene Editing, INDEL Mutation, Polymerase Chain Reaction, RNA, Guide, Kinetoplastida