Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Functional genomic analysis and related strategies for genetic control of malaria rely on validated and reproducible methods to accurately modify the genome of Anopheles mosquitoes. Amongst these methods, the φC31 system allows precise and stable site-directed integration of transgenes, or the substitution of integrated transgenic cassettes via recombinase-mediated cassette exchange (RMCE). This method relies on the action of the Streptomyces φC31 bacteriophage integrase to catalyze recombination between two specific attachment sites designated attP (derived from the phage) and attB (derived from the host bacterium). The system uses one or two attP sites that have been integrated previously into the mosquito genome and attB site(s) in the donor template DNA. Here we illustrate how to stably modify the genome of attP-bearing Anopheles docking lines using two plasmids: an attB-tagged donor carrying the integration or exchange template and a helper plasmid encoding the φC31 integrase. We report two representative results of φC31-mediated site-directed modification: the single integration of a transgenic cassette in An. stephensi and RMCE in An. gambiae mosquitoes. φC31-mediated genome manipulation offers the advantage of reproducible transgene expression from validated, fitness neutral genomic sites, allowing comparative qualitative and quantitative analyses of phenotypes. The site-directed nature of the integration also substantially simplifies the validation of the single insertion site and the mating scheme to obtain a stable transgenic line. These and other characteristics make the φC31 system an essential component of the genetic toolkit for the transgenic manipulation of malaria mosquitoes and other insect vectors.

Original publication

DOI

10.3791/62146

Type

Journal article

Journal

J Vis Exp

Publication Date

02/02/2021

Keywords

Animals, Anopheles, Gene Expression Regulation, Gene Targeting, Genome, Integrases, Malaria, Mosquito Vectors, Mutagenesis, Site-Directed, Mutation, Recombination, Genetic, Siphoviridae, Transgenes