Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sterile insect technology (SIT) is an environmentally friendly method for pest control. As part of our efforts to develop a strategy that results in engineered male-sterile strains with minimum effects on viability and mating competition, we used CRISPR/Cas9 technology to disrupt Ser2, which encodes a seminal fluid protein, in the model lepidopteran insect, Bombyx mori, and an important agricultural pest, Plutella xylostella. Disruption of Ser2 resulted in dominant heritable male sterility. Wild-type females mated with Ser2-deficient males laid eggs normally, but the eggs did not hatch. We detected no differences in other reproductive behaviors in the mutant males. These results support the conclusion that Ser2 gene is necessary for male reproductive success in diverse lepidopterans. Targeting Ser2 gene has the potential to form the basis for a new strategy for pest control.

Original publication

DOI

10.1016/j.ibmb.2019.103243

Type

Journal article

Journal

Insect Biochem Mol Biol

Publication Date

01/2020

Volume

116

Keywords

Bombyx mori, CRISPR/Cas9, Male sterility, Plutella xylostella, Ser2, Animals, Bombyx, CRISPR-Cas Systems, Infertility, Male, Insect Proteins, Male, Moths, Mutation, Reproduction, Serine Proteases