Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mosquito-borne arboviruses are responsible for recent dengue, chikungunya, and Zika pandemics. The yellow-fever mosquito, Aedes aegypti, plays an important role in the transmission of all three viruses. We developed a miRNA-based approach that results in a dual resistance phenotype in mosquitoes to dengue serotype 3 (DENV-3) and chikungunya (CHIKV) viruses. The target viruses are from two distinct arboviral families and the antiviral mechanism is designed to function through the endogenous miRNA pathway in infected mosquitoes. Challenge experiments showed reductions in viral transmission efficiency of transgenic mosquitoes. Several components of mosquito fitness were examined, and transgenic mosquitoes with the PUb promoter showed minor fitness costs at all developing stages. Further development of these strains with gene editing tools could make them candidates for releases in population replacement strategies for sustainable control of multiple arbovirus diseases.

Original publication




Journal article


Commun Biol

Publication Date