Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Invasive species cause considerable ecological and economic damage. Despite decades of broad impacts of invasives on diversity and agriculture, the genetic adaptations and near-term evolution of invading populations are poorly understood. The fall webworm, Hyphantria cunea, a highly successful invasive species that originated in North America, spread throughout the Northern Hemisphere during the past 80 years. Here, we use whole-genome sequencing of invasive populations and transcriptome profiling to probe the underlying genetic bases for the rapid adaptation of this species to new environments and host plants. We find substantial reductions in genomic diversity consistent with founder effects. Genes and pathways associated with carbohydrate metabolism and gustatory receptors are substantially expanded in the webworm genome and show strong signatures of functional polymorphisms in the invasive population. We also find that silk-yielding-associated genes maintained a relatively low level of functional diversity, and identify candidate genes that may regulate the development of silk glands in fall webworms. These data suggest that the fall webworm's ability to colonize novel hosts, mediated by plasticity in their gustatory capabilities along with an increased ability to utilize novel nutrition sources and substrates, has facilitated the rapid and successful adaptation of the species throughout its range.

Original publication




Journal article


Nat Ecol Evol

Publication Date





105 - 115


Adaptation, Physiological, Animals, Genome, Introduced Species, Larva, Male, Moths, Transcriptome