Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transposon-based genetic transformation has facilitated insect functional genomics and new strategies of pest management. However, there is a need for alternative, site-specific approaches to overcome limitations of random integration (and associated position-effects) and potential instability of inserted transgenes. Here we describe a transposon-free, site-specific genetic transformation system mediated by transcription activator-like effector nucleases (TALENs) in the silkworm, Bombyx mori, a lepidopteran model insect. We successfully established a site-specific transgenic system with comparable transformation efficiency to transposon-based genetic transformation through microinjection of TALENs mRNA targeting the BmBLOS2 locus and a linearizable donor plasmid encoding an expression cassette of the DsRed2 red fluorescent protein. This system provides a valuable approach for insect transgenesis and will enable future functional gene analysis and generate novel applications in agricultural and medical insect pest-management technologies.

Original publication

DOI

10.1016/j.ibmb.2014.10.003

Type

Journal article

Journal

Insect Biochem Mol Biol

Publication Date

12/2014

Volume

55

Pages

26 - 30

Keywords

Bombyx mori, Homologous recombination, TALENs, Animals, Base Sequence, Bombyx, Female, Gene Transfer Techniques, Male, Molecular Sequence Data, Transcription Activator-Like Effector Nucleases