Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Population replacement strategies for controlling transmission of mosquito-borne diseases call for the introgression of antipathogen effector genes into vector populations. It is anticipated that these genes, if present at high enough frequencies, will impede transmission of the target pathogens and result in reduced human morbidity and mortality. Recent laboratory successes in the development of virus- and protozoan-resistant mosquito strains make urgent research of gene drive systems capable of moving effector genes into wild populations. A systematic approach to developing safe and effective gene drive systems that includes defining the requirements of the system, identifying naturally occurring or synthetic genetic mechanisms for gene spread upon which drive systems can be based and the successful adaptation of a mechanism to a drive system, should mitigate concerns about using genetically engineered mosquitoes for disease control.

Original publication

DOI

10.1016/j.pt.2004.11.004

Type

Journal article

Journal

Trends Parasitol

Publication Date

02/2005

Volume

21

Pages

64 - 67

Keywords

Animals, Culicidae, Humans, Insect Vectors, Organisms, Genetically Modified, Parasitic Diseases