Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A disease control strategy based on the introduction into mosquito populations of a gene conferring a pathogen-refractory phenotype is currently under investigation. This population replacement approach requires a drive system that will quickly spread and fix antipathogen effector genes in target populations. Modified transposable elements containing the control sequences of developmentally regulated genes may provide the basis for a gene drive system that regulates gene mobilization in a sex- and stage-restrictive manner. Screening of a Drosophila melanogaster database for genes whose products localize exclusively in the future germ cells during early embryonic development resulted in the identification of several candidate genes. The regulatory sequences of these genes could be used to drive transposition. Mosquito orthologous genes of oskar were identified based on sequence homology and characterized further. The tissue- and sex-specific expression profiles and hybridizations in situ show that oskar orthologous transcripts in Anopheles gambiae and Aedes aegypti accumulate in developing oocytes of adult females and localize to the posterior poles of early embryos. These characteristics potentiate the use of the regulatory sequences of mosquito oskar genes for the control of modified transposable elements.

Original publication

DOI

10.1111/j.1365-2583.2006.00655.x

Type

Journal article

Journal

Insect Mol Biol

Publication Date

06/2006

Volume

15

Pages

363 - 372

Keywords

Aedes, Amino Acid Sequence, Animals, Anopheles, Drosophila Proteins, Embryo, Nonmammalian, Female, Gene Expression Regulation, Developmental, Genes, Insect, Male, Molecular Sequence Data, Oocytes, Ovary, RNA, Messenger, Sequence Alignment, Sex Characteristics