Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Some genetic strategies for controlling transmission of mosquito-borne diseases call for the introgression of antipathogen effector genes into vector populations. Endogenous mosquito promoter and other cis-acting DNA sequences are needed to direct the expression of the effector molecules to maximize their efficacy. Vitellogenin (Vg)-encoding gene control sequences are candidates for driving tissue-, stage- and sex-specific expression of exogenous genes. One of the Anopheles stephensi Vg genes, AsVg1, was cloned and a full-length cDNA, as well as 850 base pairs adjacent to the 5'-end, were sequenced and characterized. Expression of AsVg1 is restricted to the fat body tissues of blood-fed females, and the amino acid sequence of the conceptual translation product is >85% identical to those of other anopheline Vgs. These characteristics support the conclusion that AsVg1 is a Vg-encoding gene. Functional analyses of the AsVg1 putative cis-regulatory sequences were performed using transgenic mosquitoes. The results showed that DNA fragments encompassing the 850 base pairs immediately adjacent to the 5'-end of the gene and the 3'-end untranslated region are sufficient to direct sex-, stage- and tissue-specific expression of a reporter gene. These data indicate that the AsVg1 promoter is a good candidate for controlling the expression of anti-pathogen effector molecules in this malaria vector mosquito.

Original publication

DOI

10.1016/j.ibmb.2006.05.011

Type

Journal article

Journal

Insect Biochem Mol Biol

Publication Date

09/2006

Volume

36

Pages

694 - 700

Keywords

Animals, Anopheles, Base Sequence, DNA, Complementary, Female, Gene Expression Regulation, Insect Vectors, Molecular Sequence Data, Promoter Regions, Genetic, Vitellogenins