Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In our contribution to this special issue focusing on advances in Alzheimer's disease (AD) research since the centennial, we will briefly review some of our own studies applying magnetic resonance imaging (MRI) measures of function and connectivity for characterization of genetic contributions to the neuropathology of AD and as candidate biomarkers. We review how functional MRI during both memory encoding and at rest is able to define APOE4 genotype-dependent physiological changes decades before potential development of AD and demonstrate changes distinct from those with healthy aging. More generally, imaging provides a powerful quantitative measure of phenotype for understanding associations arising from whole genome studies in AD. Structural connectivity measures derived from diffusion tensor MRI (DTI) methods offer additional markers of neuropathology arising from the secondary changes in axonal caliber and myelination that accompany decreased neuronal activity and neurodegeneration. We illustrate applications of DTI for more finely mapping neurodegenerative changes with AD in the thalamus in vivo and for defining neuropathological changes in the white matter itself. The latter efforts have highlighted how sensitivity to the neuropathology can be enhanced by using more specific DTI measures and interpreting them relative to knowledge of local white matter anatomy in the healthy brain. Together, our studies and related work are helping to establish the exciting potential of a new range of MRI methods as neuropathological measures and as biomarkers of disease progression.

Original publication

DOI

10.3233/JAD-2012-129012

Type

Journal article

Journal

J Alzheimers Dis

Publication Date

2013

Volume

33 Suppl 1

Pages

S163 - S172

Keywords

Alzheimer Disease, Brain, Diffusion Tensor Imaging, Disease Progression, Humans, Magnetic Resonance Imaging, Nerve Net, Neurons