Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Elucidation of the molecular basis of mammalian circadian rhythms has progressed dramatically in recent years through the characterization of mouse mutants. With the implementation of numerous mouse genetics programs, comprehensive sets of mutations in genes affecting circadian output measures have been generated. Although incomplete, existing arrays of mutants have been instrumental in our understanding of how the internal SCN clock interacts with the environment and how it conveys its rhythm to remote oscillators. The use of ENU mutagenesis has proven to be a significant contributor, generating mutations leading to subtle and distinct alterations in circadian protein function. In parallel, progress with mouse gene targeting allows one to study gene function in depth by ablating it entirely, in specific tissues at specific times, or by targeting specific functional domains. This has culminated in worldwide efforts to target every gene in the mouse genome allowing researchers to study multiple gene targeting effects systematically.

Original publication

DOI

10.1016/B978-0-444-59427-3.00015-0

Type

Journal article

Journal

Prog Brain Res

Publication Date

2012

Volume

199

Pages

247 - 265

Keywords

Animals, Circadian Rhythm, Circadian Rhythm Signaling Peptides and Proteins, Mice, Mutation