Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The intention is to provide a Bayesian formulation of regularized local linear regression, combined with techniques for optimal bandwidth selection. This approach arises from the idea that only those covariates that are found to be relevant for the regression function should be considered by the kernel function used to define the neighborhood of the point of interest. However, the regression function itself depends on the kernel function. A maximum posterior joint estimation of the regression parameters is given. Also, an alternative algorithm based on sampling techniques is developed for finding both the regression parameter distribution and the predictive distribution. © 2013 Elsevier B.V.

Original publication

DOI

10.1016/j.csda.2013.01.008

Type

Journal article

Journal

Computational Statistics and Data Analysis

Publication Date

2013