Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Abnormalities in the neurophysiological measures P300 amplitude and latency constitute endophenotypes for psychosis. Disrupted-in-Schizophrenia-1 (DISC1) has been proposed as a promising susceptibility gene for schizophrenia, and a previous study has suggested that it is associated with P300 deficits in schizophrenia. METHODS: We examined the role of variation in DISC1 polymorphisms on the P300 endophenotype in a large sample of patients with schizophrenia or psychotic bipolar disorder (n = 149), their unaffected relatives (n = 130), and unrelated healthy controls (n = 208) using linear regression and haplotype analysis. RESULTS: Significant associations between P300 amplitude and latency and DISC1 polymorphisms/haplotypes were found. Those homozygous for the A allele of single-nucleotide polymorphism (SNP) rs821597 displayed significantly reduced P300 amplitudes in comparison with homozygous for the G allele (P = .009) and the heterozygous group (P = .018). Haplotype analysis showed a significant association for DISC1 haplotypes (rs3738401|rs6675281|rs821597|rs821616|rs967244|rs980989) and P300 latency. Haplotype GCGTCG and ACGTTT were associated with shorter latencies. DISCUSSION: The P300 waveform appears to be modulated by variation in individual SNPs and haplotypes of DISC1. Because DISC1 is involved in neurodevelopment, one hypothesis is that disruption in neural connectivity impairs cognitive processes illustrated by P300 deficits observed in this sample.

Original publication




Journal article


Schizophr Bull

Publication Date





161 - 167


Adult, Bipolar Disorder, Brain Waves, Electroencephalography, Event-Related Potentials, P300, Female, Haplotypes, Humans, Male, Middle Aged, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Psychotic Disorders, Schizophrenia, Single-Blind Method