Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

CONTEXT: Alterations in glutamatergic neurotransmission and cerebral cortical dysfunction are thought to be central to the pathophysiology of psychosis, but the relationship between these 2 factors is unclear. OBJECTIVE: To investigate the relationship between brain glutamate levels and cortical response during executive functioning in people at high risk for psychosis (ie, with an at-risk mental state [ARMS]). DESIGN: Subjects were studied using functional magnetic resonance imaging while they performed a verbal fluency task, and proton magnetic resonance spectroscopy was used to measure their brain regional glutamate levels. SETTING: Maudsley Hospital, London, England. PATIENTS AND OTHER PARTICIPANTS: A total of 41 subjects: 24 subjects with an ARMS and 17 healthy volunteers (controls). MAIN OUTCOME MEASURES: Regional brain activation (blood oxygen level-dependent response); levels of glutamate in the anterior cingulate, left thalamus, and left hippocampus; and psychopathology ratings at the time of scanning. RESULTS: During the verbal fluency task, subjects with an ARMS showed greater activation than did controls in the middle frontal gyrus bilaterally. Thalamic glutamate levels were lower in the ARMS group than in control group. Within the ARMS group, thalamic glutamate levels were negatively associated with activation in the right dorsolateral prefrontal and left orbitofrontal cortex, but positively associated with activation in the right hippocampus and in the temporal cortex bilaterally. There was also a significant group difference in the relationship between cortical activation and thalamic glutamate levels, with the control group showing correlations in the opposite direction to those in the ARMS group in the prefrontal cortex and in the right hippocampus and superior temporal gyrus. CONCLUSIONS: Altered prefrontal, hippocampal, and temporal function in people with an ARMS is related to a reduction in thalamic glutamate levels, and this relationship is different from that in healthy controls.

Original publication

DOI

10.1001/archgenpsychiatry.2011.46

Type

Journal article

Journal

Arch Gen Psychiatry

Publication Date

09/2011

Volume

68

Pages

881 - 890

Keywords

Adult, Brain, Brain Mapping, Cerebral Cortex, Executive Function, Female, Glutamic Acid, Humans, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Male, Psychiatric Status Rating Scales, Psychomotor Performance, Psychotic Disorders, Synaptic Transmission, Thalamus