Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neural oscillations have emerged as one of the major electrophysiological phenomena investigated in cognitive and systems neuroscience. These oscillations are typically studied with regard to their amplitude, phase, and/or phase coupling. Here we demonstrate the existence of another property that is intrinsic to neural oscillations but has hitherto remained largely unexplored in cognitive and systems neuroscience. This pertains to the notion that these oscillations show reliable diversity in their phase-relations between neighboring recording sites (phase-relation diversity). In contrast to most previous work, we demonstrate that this diversity is restricted neither to low-frequency oscillations nor to periods outside of sensory stimulation. On the basis of magnetoencephalographic (MEG) recordings in humans, we show that this diversity is prominent not only for ongoing alpha oscillations (8-12 Hz) but also for gamma oscillations (50-70 Hz) that are induced by sustained visual stimulation. We further show that this diversity provides a dimension within electrophysiological data that, provided a sufficiently high signal-to-noise ratio, does not covary with changes in amplitude. These observations place phase-relation diversity on the map as a prominent and general property of neural oscillations that, moreover, can be studied with noninvasive methods in healthy human volunteers. This opens important new avenues for investigating how neural oscillations contribute to the neural implementation of cognition and behavior.

Original publication

DOI

10.1152/jn.00788.2014

Type

Journal article

Journal

J Neurophysiol

Publication Date

01/03/2015

Volume

113

Pages

1556 - 1563

Keywords

gamma oscillations, human, magnetoencephalography, neural oscillations, phase-relation, Adult, Alpha Rhythm, Female, Gamma Rhythm, Humans, Magnetoencephalography, Male, Middle Aged, Photic Stimulation, Sensorimotor Cortex