Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A blood-based protein biomarker, or set of protein biomarkers, that could predict onset and progression of Alzheimer's disease (AD) would have great utility; potentially clinically, but also for clinical trials and especially in the selection of subjects for preventative trials. We reviewed a comprehensive list of 21 published discovery or panel-based (> 100 proteins) blood proteomics studies of AD, which had identified a total of 163 candidate biomarkers. Few putative blood-based protein biomarkers replicate in independent studies but we found that some proteins do appear in multiple studies; for example, four candidate biomarkers are found to associate with AD-related phenotypes in five independent research cohorts in these 21 studies: α-1-antitrypsin, α-2-macroglobulin, apolipoprotein E, and complement C3. Using SomaLogic's SOMAscan proteomics technology, we were able to conduct a large-scale replication study for 94 of the 163 candidate biomarkers from these 21 published studies in plasma samples from 677 subjects from the AddNeuroMed (ANM) and the Alzheimer's Research UK/Maudsley BRC Dementia Case Registry at King's Health Partners (ARUK/DCR) research cohorts. Nine of the 94 previously reported candidates were found to associate with AD-related phenotypes (False Discovery Rate (FDR) q-value < 0.1). These proteins show sufficient replication to be considered for further investigation as a biomarker set. Overall, we show that there are some signs of a replicable signal in the range of proteins identified in previous studies and we are able to further replicate some of these. This suggests that AD pathology does affect the blood proteome with some consistency.

Original publication

DOI

10.3233/JAD-130380

Type

Journal article

Journal

J Alzheimers Dis

Publication Date

2014

Volume

38

Pages

515 - 531

Keywords

Alzheimer's disease, biomarkers, blood, magnetic resonance imaging, nucleotide aptamers, proteome, Alzheimer Disease, Biomarkers, Blood Proteins, Disease Progression, Humans, Proteome