Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent genetic and proteomic studies demonstrate that clusterin/apolipoprotein-J is associated with risk, pathology, and progression of Alzheimer's disease (AD). Our main aim was to examine associations between plasma clusterin concentration and longitudinal changes in brain volume in normal aging and mild cognitive impairment (MCI). A secondary objective was to examine associations between peripheral concentration of clusterin and its concentration in the brain within regions that undergo neuropathological changes in AD. Non-demented individuals (N=139; mean baseline age 70.5 years) received annual volumetric MRI (912 MRI scans in total) over a mean six-year interval. Sixteen participants (92 MRI scans in total) were diagnosed during the course of the study with amnestic MCI. Clusterin concentration was assayed by ELISA in plasma samples collected within a year of the baseline MRI. Mixed effects regression models investigated whether plasma clusterin concentration was associated with rates of brain atrophy for control and MCI groups and whether these associations differed between groups. In a separate autopsy sample of individuals with AD (N=17) and healthy controls (N=4), we examined the association between antemortem clusterin concentration in plasma and postmortem levels in the superior temporal gyrus, hippocampus and cerebellum. The associations of plasma clusterin concentration with rates of change in brain volume were significantly different between MCI and control groups in several volumes including whole brain, ventricular CSF, temporal gray matter as well as parahippocampal, superior temporal and cingulate gyri. Within the MCI but not control group, higher baseline concentration of plasma clusterin was associated with slower rates of brain atrophy in these regions. In the combined autopsy sample of AD and control cases, representing a range of severity in AD pathology, we observed a significant association between clusterin concentration in the plasma and that in the superior temporal gyrus. Our findings suggest that clusterin, a plasma protein with roles in amyloid clearance, complement inhibition and apoptosis, is associated with rate of brain atrophy in MCI. Furthermore, peripheral concentration of clusterin also appears to reflect its concentration within brain regions vulnerable to AD pathology. These findings in combination suggest an influence of this multi-functional protein on early stages of progression in AD pathology.

Original publication

DOI

10.1016/j.neuroimage.2011.07.056

Type

Journal article

Journal

Neuroimage

Publication Date

02/01/2012

Volume

59

Pages

212 - 217

Keywords

Aged, Aged, 80 and over, Aging, Alzheimer Disease, Atrophy, Brain, Clusterin, Cognitive Dysfunction, Enzyme-Linked Immunosorbent Assay, Female, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged