Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND METHODS: There is an urgent need for peripheral surrogates of Alzheimer's disease (AD) that accurately reflect disease state and severity as well as correlate with key features of its neuropathology. The aim of this study was to identify plasma proteins associated with known in vivo markers of disease activity. In an earlier proteomic study of plasma, we discovered a panel of 15 proteins that were differentially expressed in AD and further validated complement factor-H (CFH) and alpha-2-macroglobulin (A2M) as AD-specific plasma biomarkers. In the present study, we extended these findings by testing the associations of these plasma proteins with neuro-imaging measures of disease progression in AD. We combined (1)H-magnetic resonance spectroscopy of the hippocampus and MRI-based hippocampal volumetry with proteomic analysis of plasma in early AD and mild cognitive impairment (MCI) to achieve this goal. Using (1)H-magnetic resonance spectroscopy, we derived estimates of the hippocampal metabolite ratio N-acetylaspartate/myo-inositol (NAA/mI), a biochemical measure that is associated with cognitive decline in early AD. We also undertook a proteomic analysis of plasma in these individuals using two-dimensional gel electrophoresis (2DGE). RESULTS: We observed that two plasma proteins previously shown to be differentially expressed in AD, complement factor-H (CFH) and alpha-2-macroglobulin (A2M) showed significant positive correlations with hippocampal NAA/mI ratio in AD. CONCLUSIONS: The association of plasma CFH and A2M with hippocampal NAA/mI in this cohort of AD subjects suggests that these proteins may reflect disease progression in early AD. These findings warrant validation in large population-based datasets.

Original publication




Journal article


J Neurol

Publication Date





1712 - 1720


Aged, Alzheimer Disease, Aspartic Acid, Biomarkers, Complement Factor H, Disease Progression, Electrophoresis, Gel, Two-Dimensional, Female, Hippocampus, Humans, Inositol, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Male, Organ Size, alpha-Macroglobulins