Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed targeted single-molecule and short-read RNA-seq to survey the transcriptional landscape of a single human chromosome (Hsa21) at unprecedented resolution. Our analysis reaches the lower limits of the transcriptome, identifying a fundamental distinction between protein-coding and noncoding gene content: almost every noncoding exon undergoes alternative splicing, producing a seemingly limitless variety of isoforms. Analysis of syntenic regions of the mouse genome shows that few noncoding exons are shared between human and mouse, yet human splicing profiles are recapitulated on Hsa21 in mouse cells, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution.

Original publication




Journal article


Cell Syst

Publication Date





245 - 255.e5


RNA CaptureSeq, RNA sequencing, alternative splicing, lncRNA, mammalian transcriptome, noncoding RNA, Alternative Splicing, Animals, Base Sequence, Chromosomes, Human, Pair 21, Chromosomes, Mammalian, Databases, Genetic, Evolution, Molecular, Exons, Gene Expression Profiling, Genome, Humans, Mice, RNA Splicing, RNA, Long Noncoding, RNA, Messenger, Sequence Analysis, RNA, Single-Cell Analysis, Transcriptome