Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The serotonin receptor agonist mCPP induces hyperlocomotion in 5-HT2C receptor knockout (KO) mice or in the presence of a 5-HT2C receptor antagonist. In the present group of experiments, we evaluate the role of 5-HT1A, 5-HT1B and 5-HT2A receptors in mCPP-induced hyperactivity in 5-HT2C KO mice. We also assess the ability of agonists at these receptors to induce hyperactivity in wildtype (WT) mice pre-treated with a selective 5-HT2C receptor antagonist. As previously reported, mCPP (3 mg/kg) induced hyperactivity in 5-HT2C KO mice. A combination of the 5-HT1B receptor agonist CP-94,253 (20 mg/kg) and the 5-HT1A receptor agonist 8-OH-DPAT (0.5 mg/kg) induced marked hyperactivity in WT but not in 5-HT2C KO mice, nor in mice treated with the selective 5-HT2C receptor antagonist, SB 242084 (1.5 mg/kg). Neither CP-94,253 nor 8-OH-DPAT had any intrinsic effect on locomotion in WTs. mCPP-induced hyperactivity was attenuated in 5-HT2C KO mice by the 5-HT1B receptor antagonist SB 224289 (2.5 mg/kg), and the 5-HT2A receptor antagonists ketanserin (0.3 mg/kg) and M100907 (0.01 mg/kg) but not by the 5-HT1A receptor antagonist WAY 100635 (1 mg/kg). The 5-HT(2A/2B/2C) receptor agonist, Ro 60-0175 (3 mg/kg), induced a modest increase in locomotor activity in WT mice pre-treated with SB 242084. However, the combination of Ro 60-0175 with CP-94,253 induced a substantial increase in activity in 5-HT2C KO mice, an effect comparable to mCPP-induced hyperactivity. Thus, joint activation of 5-HT1A and 5-HT1B receptors stimulates locomotion in WT mice but this response is dependent on a functional 5-HT2C receptor population and hence is absent in 5-HT2C KO mice. By contrast, mCPP-induced hyperactivity depends on the inactivation of a separate 5-HT2C receptor population and is mediated by 5-HT2A and 5-HT1B receptor activation.

Original publication




Journal article



Publication Date





663 - 671


Animals, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Motor Activity, Piperazines, Receptor, Serotonin, 5-HT2C, Receptors, Serotonin, Serotonin 5-HT2 Receptor Agonists, Serotonin Antagonists, Serotonin Receptor Agonists