Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Approximately one third of patients diagnosed with schizophrenia do not achieve adequate symptom control with standard antipsychotic drugs (APs). Some of these may prove responsive to clozapine, but non-response to APs remains an important clinical problem and cause of increased health care costs. In a significant proportion of patients, schizophrenia is associated with natural and iatrogenic metabolic abnormalities (obesity, dyslipidaemia, impaired glucose tolerance or type 2 diabetes mellitus), hyperadrenalism and an exaggerated HPA response to stress, and chronic systemic inflammation. The endocannabinoid system (ECS) in the brain plays an important role in maintaining normal mental health. ECS modulates emotion, reward processing, sleep regulation, aversive memory extinction and HPA axis regulation. ECS overactivity contributes to visceral fat accumulation, insulin resistance and impaired energy expenditure. The cannabis plant synthesises a large number of pharmacologically active compounds unique to it known as phytocannabinoids. In contrast to the euphoric and pro-psychotic effects of delta-9-tetrahydrocannabinol (THC), certain non-intoxicating phytocannabinoids have emerged in pre-clinical and clinical models as potential APs. Since the likely mechanism of action does not rely upon dopamine D2 receptor antagonism, synergistic combinations with existing APs are plausible. The anti-inflammatory and immunomodulatory effects of the non-intoxicating phytocannabinoid cannabidiol (CBD) are well established and are summarised below. Preliminary data reviewed in this paper suggest that CBD in combination with a CB1 receptor neutral antagonist could not only augment the effects of standard APs but also target the metabolic, inflammatory and stress-related components of the schizophrenia phenotype.

Type

Journal article

Journal

Curr Pharm Des

Publication Date

2014

Volume

20

Pages

2194 - 2204

Keywords

Animals, Antipsychotic Agents, Brain-Derived Neurotrophic Factor, Cannabinoids, Endocannabinoids, Humans, Hypothalamo-Hypophyseal System, Inflammation, Metabolic Syndrome, Pituitary-Adrenal System, Schizophrenia