Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is well known that attentional selection of relevant information relies on local synchronization of alpha band neuronal oscillations in visual cortices for inhibition of distracting inputs. Additionally, evidence for long-range coupling of neuronal oscillations between visual cortices and regions engaged in the anticipation of upcoming stimuli has been more recently provided. Nevertheless, on the one hand the relation between long-range functional coupling and anatomical connections is still to be assessed, and, on the other hand, the specific role of the alpha and beta frequency bands in the different processes underlying visuo-spatial attention still needs further clarification. We address these questions using measures of linear (frequency-specific) and nonlinear (cross-frequency) phase-synchronization in a cohort of 28 healthy subjects using magnetoencephalography. We show that alpha band phase-synchronization is modulated by the orienting of attention according to a parieto-occipital top-down mechanism reflecting behavior, and its hemispheric asymmetry is predicted by volume's asymmetry of specific tracts of the Superior-Longitudinal-Fasciculus. We also show that a network comprising parietal regions and the right putative Frontal-Eye-Field, but not the left, is recruited in the deployment of spatial attention through an alpha-beta cross-frequency coupling. Overall, we demonstrate that the visuospatial attention network features subsystems indexed by characteristic spectral fingerprints, playing different functional roles in the anticipation of upcoming stimuli and with diverse relation to fiber tracts.

Original publication

DOI

10.1016/j.neuroimage.2018.12.056

Type

Journal article

Journal

Neuroimage

Publication Date

03/2019

Volume

188

Pages

722 - 732

Keywords

Adult, Alpha Rhythm, Attention, Beta Rhythm, Cortical Synchronization, Female, Humans, Magnetoencephalography, Male, Nerve Net, Neural Pathways, Space Perception, Visual Perception, White Matter, Young Adult