Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The development of clinically useful tracers for PET imaging is enormously challenging and expensive. The intranasal (IN) route of administration is purported to be a viable route for delivering drugs to the brain but has, as yet, not been investigated for the delivery of PET tracers. If the intranasal (IN) pathway presents a viable option, it extends the PET imaging field by increasing the number of tracers available for human use. Here we report the results of a rodent study testing the feasibility of the IN route to administer radiotracers for brain PET imaging. METHODS: We used two different, well characterised, brain penetrant radiotracers, [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fallypride, and aimed to evaluate the pharmacokinetics after administration of the tracers via the intranasal route, and contrast this to intravenous administration. Image acquisition was carried out after tracer administration and arterial blood samples were collected at different time intervals, centrifuged to extract plasma and gamma counted. We hypothesised that [brain region]:[plasma] ratios would be higher via the intranasal route as there are two inputs, one directly from the nose to the brain, and another from the peripheral circulation. To assess the feasibility of using this approach clinically, we used these data to estimate radiation dosimetry in humans. RESULTS: Contrary to our hypothesis, in case of both radiotracers, we did not see a higher ratio in the expected brain regions, except in the olfactory bulb, that is closest to the nose. It appears that the radiotracers move into the olfactory bulb region, but then do not progress further into other brain regions. Moreover, as the nasal cavity has a small surface area, the extrapolated dosimetry estimations for intranasal human imaging showed an unacceptably high level (15 mSv/MBq) of cumulative skin radiation exposure. CONCLUSIONS: Therefore, although an attractive route for brain permeation, we conclude that the intranasal route would present difficulties due to non-specific signal and radiation dosimetry considerations for brain PET imaging.

Original publication

DOI

10.1016/j.nucmedbio.2018.08.005

Type

Journal article

Journal

Nucl Med Biol

Publication Date

11/2018

Volume

66

Pages

32 - 39

Keywords

Blood brain barrier, Brain PET imaging, Intranasal, Neuroimaging, Nose-to-brain pathway, Administration, Intranasal, Animals, Benzamides, Brain, Feasibility Studies, Fluorodeoxyglucose F18, Humans, Male, Olfactory Bulb, Positron Emission Tomography Computed Tomography, Pyrrolidines, Radiochemistry, Rats, Rats, Sprague-Dawley, Tissue Distribution