Search results
Found 18360 matches for
Personality associations with the uptake of the cerebral blood flow marker 99mTc-Exametazime estimated with single photon emission tomography
The associations between personality dimensions of the Eysenck Personality Questionnaire and individual differences in the regional uptake of 99mTc-Exametazime in brain were studied in 51 healthy volunteers. Extraversion was significantly correlated (r = 0.46, P <0.001) with tracer uptake in the anterior and posterior cingulate areas bilaterally, whereas no significant associations were found with neuroticism or psychoticism. The results are presented with reference to recent studies which have, on the one hand, interpreted extraversion differences in relation to theories of attention and, on the other, demonstrated the role of the cingulate area as a possible neuronal substrate for attentional processing mechanisms. © 1994.
The prediction of stress in carers: The role of behaviour, reported self care and dementia in patients with idiopathic Parkinson's disease
Stress scores were elicited from relatives living with Parkinsonian patients and correlated with various aspects of the patients' impairment. The (usually female) relatives looking after male patients reported higher levels of stress than husbands looking after their wives. In general, the best predictor of relatives' stress was the behavioural rating scale of the CAPE and a reported selfcare scale designed for the study. The relative contribution of Parkinsonian motor impairment and cognitive impairment to relatives' stress scores was examined. While motor impairment was still associated with relatives' stress after controlling for sex and cognitive deterioration, both dementia and cognitive impairment measured by the Mini‐Mental State Examination were not associated with relatives' stress if Parkinsonian disability was controlled for. Copyright © 1991 John Wiley & Sons, Ltd.
A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain.
Higher levels of physical fitness or activity (PFA) have been shown to have beneficial effects on cognitive function and grey matter volumes in older adults. However, the relationship between PFA and the brain's white matter (WM) is not yet well established. Here, we aim to provide a comprehensive and systematic review of magnetic resonance imaging studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.
Is Short Sleep Bad for the Brain? Brain Structure and Cognitive Function in Short Sleepers.
Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study
Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II MRI cohort using machine learning and imaging-derived measures of gray matter morphology, diffusion-based white matter microstructure, and resting state functional connectivity. Ten-fold cross validation yielded multimodal and modality-specific brain age estimates for each participant, and additional predictions based on a separate training sample was included for comparison. The results showed equivalent age prediction accuracy between the multimodal model and the gray and white matter models (R2 of 0.34, 0.31, and 0.31, respectively), while the functional connectivity model showed a lower prediction accuracy (R2 of 0.01). Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with more apparent brain aging, with consistent associations across modalities.
Hippocampal maintenance after a 12-month physical activity intervention in older adults: The REACT MRI study.
BACKGROUND: Physical activity interventions have had varying results on modifying hippocampal volume. METHODS: The Retirement in Action (REACT) study conducted a randomised-controlled trial of a 12-month physical activity and behaviour maintenance intervention in older adults at risk of mobility impairments. The physical activity sessions were delivered twice weekly for the first twelve weeks, and then reduced to once weekly, to groups of 15 participants. Activities included cardiovascular, strength, balance and flexibility exercises. A sub-sample of participants in the physical activity (N = 54) and control arms (N = 48) underwent a 3 T MRI brain scan and cognitive assessments at baseline, 6- and 12-months (mean age = 76.6 years, 6.8 SD). It was hypothesised that the intervention would lead to a reduced rate of decline in hippocampal volume. Group differences in changes in cognition were also examined. RESULTS: As hypothesised, we found a maintenance in left hippocampal volume in the intervention arm, in comparison with the control arm after 12 months (p = 0.027). In a secondary analysis, this effect was attenuated after including age, sex and education level as covariates (p = 0.057). There was no significant between-group difference in the right hippocampus (p = 0.405). Contrary to our hypothesis, we did not find a beneficial effect of the intervention on cognitive outcomes. CONCLUSIONS: Our findings suggest that a community-based physical activity intervention can significantly ward-off hippocampal atrophy in older adults. While the lack of effects on cognition may limit the interpretability of our results, our findings of hippocampal maintenance are promising given the potential clinical relevance of protecting the hippocampus from age-related decline.