Search results
Found 18198 matches for
A systematic review and meta-analysis of cross-sectional studies examining the relationship between mobility and cognition in healthy older adults.
Ageing is associated with declines in cognitive function and mobility. The extent to which this relationship encompasses the subdomains of cognition and mobility remains unclear, however. We searched MEDLINE and EMBASE databases for cross-sectional studies examining the association between objective mobility measures (gait, lower-extremity function, balance) and cognitive function (global, executive function, memory, processing speed) in healthy older adults. Of the 642 studies identified, 26 studies met the inclusion criteria, with a total of 26,355 participants. For each feature of physical mobility, the relation to each aspect of cognition was reviewed. In the context of each association, we summarised the results to date and performed random-effects meta-analyses of published data. Reviewed findings suggest that individuals with better mobility perform better on assessments of global cognition, executive function, memory and processing speed. Not all measures of mobility were equally associated with cognitive function, however. Although there was a larger number of gait and lower-extremity function studies, and this may have driven findings, most studies examining balance and cognition measures reported no significant results. Meta-analyses on reported associations supported results by revealing significant, albeit small, effect sizes in favour of a positive association between performance on mobility measures and cognitive assessments. Future research should aim to establish the mechanisms driving this relationship, as this may identify predictors of age-related impairments.
METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: An initiative of the Joint Programme for Neurodegenerative Disease Research.
Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically "silent" cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention.
The validity of the national adult reading test in estimating premorbid intellectual ability in long‐term survivors of hemispheric glioma and whole brain irradiation—a pilot study
We have examined the validity of using the National Adult Reading Test (NART) to estimate premorbid intellectual levels in long‐term survivors of glioma who had received whole brain prophylactic irradiation. Sixteen controls matched for age, sex, education and social class were compared with 16 patients. Patients made significantly more errors in the NART than controls, even after controlling for demographic variables. NART errors were compared with demographically predicted NART errors and NART‐predicted Wechsler Adult Intelligence Scale‐Revised (WAIS‐R) with pro‐rated WAIS‐R scores. While predicted and measured error scores were similar for the controls, for patients NART errors were higher than those predicted by demographic variables, while NART‐predicted WAIS‐R scores were higher than pro‐rated WAIS‐R. NART performance, therefore, appears to be detrimentally affected by brain changes due to the primary tumour or received treatment. This conclusion was supported by the finding that, in patients, NART errors were correlated with current IQ, but not with IQ predicted by socio‐demographic variables. After excluding four demented patients, this pattern of results was largely preserved. After excluding four patients with left temporal lobe involvement, the correlation of NART errors with current IQ disappeared, whereas that with NART errors predicted by socio‐demographic variables became significant. These results suggest that the NART can only be used with caution in survivors of malignant primary brain tumors, particularly if left temporal lobe structures are involved. Copyright © 1993 John Wiley & Sons, Ltd
Is 18F-FDG-PET suitable to predict clinical response to the treatment of geriatric depression? A systematic review of PET studies.
BACKGROUND: Geriatric depression is one of the most common psychiatric disorders in later life. It differs from earlier depression in its presentation, etiology, risk factors, protective factors and outcome. Positron emission tomography (PET) can be used to detect changes in neural circuitry in neuropsychiatric disorders, and several authors have assessed its role in the diagnosis and follow-up of patients with geriatric depression. We reviewed the current evidence on the use of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) in geriatric depressed patients to find predictors of treatment response. METHODS: We searched PubMed/MEDLINE, Scopus, Embase, Cochrane Library, CINAHL and the PsycINFO databases to find relevant peer-reviewed articles on PET in geriatric depression using the search terms ('PET' or 'positron emission tomography') and ('mood' or 'affective disorder' or 'affective disorders' or 'depression' or 'dysthymia' or 'seasonal affective disorder'). RESULTS: Eleven articles comprising 128 patients were included. We extracted data on glucose uptake of depressed patients and controls at baseline and after different types of intervention (total sleep deprivation followed by a recovery sleep and treatment with selective serotonin reuptake inhibitors). CONCLUSIONS: 18F-FDG-PET showed significant alterations of glucose uptake in several brain areas, in particular the anterior cingulate cortex, which showed reduced metabolism after treatment, and was a predictor of treatment response.
Driving and dementia: a clinical update for mental health professionals.
Most people with mild dementia can continue to drive, but dementia is progressive and many patients and clinicians will be faced with questions about driving safety in the course of their illness. Determining when this happens is a complex decision, with risks of personal and public safety needing to be weighed against individual patient benefits of driving in terms of autonomy, independence and well-being. Decisions need to make reference to cognitive abilities, as well as other factors including physical comorbidity, vision, mobility, insight and history of driving errors and accidents. Deciding to stop driving, or being required to stop driving is often difficult for patients to accept and can be a particularly problematic consequence of a dementia diagnosis. Legal frameworks help in decision-making but may not provide sufficient detail to advise individual patients. We review the current guidelines and evidence relating to driving and dementia to help clinicians answer questions about driving safety and to consider the full range of assessment tools available.
Diagnosing early cognitive decline-When, how and for whom?
Mild cognitive impairment (MCI) is a term used to describe cognitive impairment in one or more cognitive domains that is greater than any expected age-related changes, but not of the magnitude to warrant a diagnosis of dementia. This review considers how early cognitive decline is diagnosed, focusing on the use of neuropsychological tests and neuroimaging, as well as the differential diagnosis. Potential treatments, including secondary prevention, post-diagnostic support and self-help are discussed. Finally, medico-legal matters such as driving, lasting power of attorney and employment are outlined.
What can gait tell us about dementia? Review of epidemiological and neuropsychological evidence.
BACKGROUND: Cognitive impairment and gait disorders in people over the age of 65 represent major public health issues because of their high frequency, their link to poor outcomes and high costs. Research has demonstrated that these two geriatric syndromes are closely related. METHODS AND RESULTS: We aim to review the evidence supporting the relationship between gait and cognitive impairment, particularly focusing on epidemiological and neuropsychological studies in patients with Mild cognitive impairment, Alzheimer's disease and Vascular dementia. The review demonstrates that gait and cognition are closely related, but our knowledge of their interrelationship is limited. Emerging evidence shows that gait analysis has the potential to contribute to diagnosis and prognosis of cognitive impairment. CONCLUSIONS: An integrated approach for evaluating these major geriatric syndromes, based on their close relationship, will not only increase our understanding of cognitive-motor interactions, but most importantly may be used to aid early diagnosis, prognosis and the development of new interventions.
Color perception differentiates Alzheimer's Disease (AD) from Vascular Dementia (VaD) patients.
BACKGROUND: Alzheimer's Disease (AD) and Vascular Dementia (VaD) are the most common causes of dementia in older people. Both diseases appear to have similar clinical symptoms, such as deficits in attention and executive function, but specific cognitive domains are affected. Current cohort studies have shown a close relationship between αβ deposits and age-related macular degeneration (Johnson et al., 2002; Ratnayaka et al., 2015). Additionally, a close link between the thinning of the retinal nerve fiber (RNFL) and AD patients has been described, while it has been proposed that AD patients suffer from a non-specific type of color blindness (Pache et al., 2003). METHODS: Our study included 103 individuals divided into three groups: A healthy control group (n = 35), AD (n = 32) according to DSM-IV-TR, NINCDS-ADRDA criteria, and VaD (n = 36) based on ΝΙΝDS-AIREN, as well as Magnetic Resonance Imaging (MRI) results. The severity of patient's cognitive impairment, was measured with the Mini-Mental State Examination (MMSE) and was classified according to the Reisberg global deterioration scale (GDS). Visual perception was examined using the Ishihara plates: "Ishihara Color Vision Test - 38 Plate." RESULTS: The three groups were not statistically different for demographic data (age, gender, and education). The Ishihara color blindness test has a sensitivity of 80.6% and a specificity of 87.5% to discriminate AD and VaD patients when an optimal (32.5) cut-off value of performance is used. CONCLUSIONS: Ishihara Color Vision Test - 38 Plate is a promising potential method as an easy and not time-consuming screening test for the differential diagnosis of dementia between AD and VaD.
Trajectories of Depressive Symptoms Before Diagnosis of Dementia: A 28-Year Follow-up Study.
IMPORTANCE: Neuropsychiatric symptoms, depressive symptoms in particular, are common in patients with dementia but whether depressive symptoms in adulthood increases the risk for dementia remains the subject of debate. OBJECTIVE: To characterize the trajectory of depressive symptoms over 28 years prior to dementia diagnosis to determine whether depressive symptoms carry risk for dementia. DESIGN, SETTING, AND PARTICIPANTS: Up to 10 308 persons, aged 35 to 55 years, were recruited to the Whitehall II cohort study in 1985, with the end of follow-up in 2015. Data analysis for this study in a UK general community was conducted from October to December 2016. EXPOSURES: Depressive symptoms assessed on 9 occasions between 1985 and 2012 using the General Health Questionnaire. MAIN OUTCOMES AND MEASURES: Incidence of dementia (n = 322) between 1985 and 2015. RESULTS: Of the 10 189 persons included in the study, 6838 were men (67%) and 3351 were women (33%). Those reporting depressive symptoms in 1985 (mean follow-up, 27 years) did not have significantly increased risk for dementia (hazard ratio [HR], 1.21; 95% CI, 0.95-1.54) in Cox regression adjusted for sociodemographic covariates, health behaviors, and chronic conditions. However, those with depressive symptoms in 2003 (mean follow-up, 11 years) had an increased risk (HR, 1.72; 95% CI, 1.21-2.44). Those with chronic/recurring depressive symptoms (≥2 of 3 occasions) in the early study phase (mean follow-up, 22 years) did not have excess risk (HR, 1.02; 95% CI, 0.72-1.44) but those with chronic/recurring symptoms in the late phase (mean follow-up, 11 years) did have higher risk for dementia (HR, 1.67; 95% CI, 1.11-2.49). Analysis of retrospective depressive trajectories over 28 years, using mixed models and a backward time scale, shows that in those with dementia, differences in depressive symptoms compared with those without dementia became apparent 11 years (difference, 0.61; 95% CI, 0.09-1.13; P = .02) before dementia diagnosis and became more than 9 times larger at the year of diagnosis (difference, 5.81; 95% CI, 4.81-6.81; P
Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults.
White matter hyperintensities (WMH) are frequently divided into periventricular (PWMH) and deep (DWMH), and the two classes have been associated with different cognitive, microstructural, and clinical correlates. However, although this distinction is widely used in visual ratings scales, how to best anatomically define the two classes is still disputed. In fact, the methods used to define PWMH and DWMH vary significantly between studies, making results difficult to compare. The purpose of this study was twofold: first, to compare four current criteria used to define PWMH and DWMH in a cohort of healthy older adults (mean age: 69.58 ± 5.33 years) by quantifying possible differences in terms of estimated volumes; second, to explore associations between the two WMH sub-classes with cognition, tissue microstructure and cardiovascular risk factors, analysing the impact of different criteria on the specific associations. Our results suggest that the classification criterion used for the definition of PWMH and DWMH should not be considered a major obstacle for the comparison of different studies. We observed that higher PWMH load is associated with reduced cognitive function, higher mean arterial pressure and age. Higher DWMH load is associated with higher body mass index. PWMH have lower fractional anisotropy than DWMH, which also have more heterogeneous microstructure. These findings support the hypothesis that PWMH and DWMH are different entities and that their distinction can provide useful information about healthy and pathological aging processes.
Effect of age and the APOE gene on metabolite concentrations in the posterior cingulate cortex.
Proton magnetic resonance spectroscopy (1H-MRS) has provided valuable information about the neurochemical profile of Alzheimer's disease (AD). However, its clinical utility has been limited in part by the lack of consistent information on how metabolite concentrations vary in the normal aging brain and in carriers of apolipoprotein E (APOE) ε4, an established risk gene for AD. We quantified metabolites within an 8cm3 voxel within the posterior cingulate cortex (PCC)/precuneus in 30 younger (20-40 years) and 151 cognitively healthy older individuals (60-85 years). All 1H-MRS scans were performed at 3T using the short-echo SPECIAL sequence and analyzed with LCModel. The effect of APOE was assessed in a sub-set of 130 volunteers. Older participants had significantly higher myo-inositol and creatine, and significantly lower glutathione and glutamate than younger participants. There was no significant effect of APOE or an interaction between APOE and age on the metabolite profile. Our data suggest that creatine, a commonly used reference metabolite in 1H-MRS studies, does not remain stable across adulthood within this region and therefore may not be a suitable reference in studies involving a broad age-range. Increases in creatine and myo-inositol may reflect age-related glial proliferation; decreases in glutamate and glutathione suggest a decline in synaptic and antioxidant efficiency. Our findings inform longitudinal clinical studies by characterizing age-related metabolite changes in a non-clinical sample.
Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults.
Mobility limitations lead to a cascade of adverse events in old age, yet the neural and cognitive correlates of mobility performance in older adults remain poorly understood. In a sample of 387 adults (mean age 69.0 ± 5.1 years), we tested the relationship between mobility measures, cognitive assessments, and MRI markers of brain structure. Mobility was assessed in 2007-2009, using gait, balance and chair-stands tests. In 2012-2015, cognitive testing assessed executive function, memory and processing-speed; gray matter volumes (GMV) were examined using voxel-based morphometry, and white matter microstructure was assessed using tract-based spatial statistics of fractional anisotropy, axial diffusivity (AD), and radial diffusivity (RD). All mobility measures were positively associated with processing-speed. Faster walking speed was also correlated with higher executive function, while memory was not associated with any mobility measure. Increased GMV within the cerebellum, basal ganglia, post-central gyrus, and superior parietal lobe was associated with better mobility. In addition, better performance on the chair-stands test was correlated with decreased RD and AD. Overall, our results indicate that, even in non-clinical populations, mobility measures can be sensitive to sub-clinical variance in cognition and brain structures.
Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study.
Objectives To investigate whether moderate alcohol consumption has a favourable or adverse association or no association with brain structure and function.Design Observational cohort study with weekly alcohol intake and cognitive performance measured repeatedly over 30 years (1985-2015). Multimodal magnetic resonance imaging (MRI) was performed at study endpoint (2012-15).Setting Community dwelling adults enrolled in the Whitehall II cohort based in the UK (the Whitehall II imaging substudy).Participants 550 men and women with mean age 43.0 (SD 5.4) at study baseline, none were "alcohol dependent" according to the CAGE screening questionnaire, and all safe to undergo MRI of the brain at follow-up. Twenty three were excluded because of incomplete or poor quality imaging data or gross structural abnormality (such as a brain cyst) or incomplete alcohol use, sociodemographic, health, or cognitive data.Main outcome measures Structural brain measures included hippocampal atrophy, grey matter density, and white matter microstructure. Functional measures included cognitive decline over the study and cross sectional cognitive performance at the time of scanning.Results Higher alcohol consumption over the 30 year follow-up was associated with increased odds of hippocampal atrophy in a dose dependent fashion. While those consuming over 30 units a week were at the highest risk compared with abstainers (odds ratio 5.8, 95% confidence interval 1.8 to 18.6; P≤0.001), even those drinking moderately (14-21 units/week) had three times the odds of right sided hippocampal atrophy (3.4, 1.4 to 8.1; P=0.007). There was no protective effect of light drinking (1-<7 units/week) over abstinence. Higher alcohol use was also associated with differences in corpus callosum microstructure and faster decline in lexical fluency. No association was found with cross sectional cognitive performance or longitudinal changes in semantic fluency or word recall.Conclusions Alcohol consumption, even at moderate levels, is associated with adverse brain outcomes including hippocampal atrophy. These results support the recent reduction in alcohol guidance in the UK and question the current limits recommended in the US.
Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults.
Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that plays a role in uncoupling electron transport from adenosine triphosphate (ATP) formation. Polymorphisms of the UCP2 gene in humans affect protein expression and function and have been linked to survival into old age. Since UCP2 is expressed in several brain regions, we investigated in this study whether UCP2 polymorphisms might 1) affect occurrence of neurodegenerative or mental health disorders and 2) affect measures of brain structure and function. We used structural magnetic resonance imaging (MRI), diffusion-weighted MRI and resting-state functional MRI in the neuroimaging sub-study of the Whitehall II cohort. Data from 536 individuals aged 60 to 83 years were analyzed. No association of UCP2 polymorphisms with the occurrence of neurodegenerative disorders or grey and white matter structure or resting-state functional connectivity was observed. However, there was a significant effect on occurrence of mood disorders in men with the minor alleles of -866G>A (rs659366) and Ala55Val (rs660339)) being associated with increasing odds of lifetime occurrence of mood disorders in a dose dependent manner. This result was not accompanied by effects of UCP2 polymorphisms on brain structure and function, which might either indicate that the sample investigated here was too small and underpowered to find any significant effects, or that potential effects of UCP2 polymorphisms on the brain are too subtle to be picked up by any of the neuroimaging measures used.
Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults.
Episodic and spatial memory are commonly impaired in ageing and Alzheimer's disease. Volumetric and task-based functional magnetic resonance imaging (fMRI) studies suggest a preferential involvement of the medial temporal lobe (MTL), particularly the hippocampus, in episodic and spatial memory processing. The present study examined how these two memory types were related in terms of their associated resting-state functional architecture. 3T multiband resting state fMRI scans from 497 participants (60-82 years old) of the cross-sectional Whitehall II Imaging sub-study were analysed using an unbiased, data-driven network-modelling technique (FSLNets). Factor analysis was performed on the cognitive battery; the Hopkins Verbal Learning test and Rey-Osterreith Complex Figure test factors were used to assess verbal and visuospatial memory respectively. We present a map of the macroscopic functional connectome for the Whitehall II Imaging sub-study, comprising 58 functionally distinct nodes clustered into five major resting-state networks. Within this map we identified distinct functional connections associated with verbal and visuospatial memory. Functional anticorrelation between the hippocampal formation and the frontal pole was significantly associated with better verbal memory in an age-dependent manner. In contrast, hippocampus-motor and parietal-motor functional connections were associated with visuospatial memory independently of age. These relationships were not driven by grey matter volume and were unique to the respective memory domain. Our findings provide new insights into current models of brain-behaviour interactions, and suggest that while both episodic and visuospatial memory engage MTL nodes of the default mode network, the two memory domains differ in terms of the associated functional connections between the MTL and other resting-state brain networks.
Associations between self-reported sleep quality and white matter in community-dwelling older adults: A prospective cohort study.
Both sleep disturbances and decline in white matter microstructure are commonly observed in ageing populations, as well as in age-related psychiatric and neurological illnesses. A relationship between sleep and white matter microstructure may underlie such relationships, but few imaging studies have directly examined this hypothesis. In a study of 448 community-dwelling members of the Whitehall II Imaging Sub-Study aged between 60 and 82 years (90 female, mean age 69.2 ± 5.1 years), we used the magnetic resonance imaging technique diffusion tensor imaging to examine the relationship between self-reported sleep quality and white matter microstructure. Poor sleep quality at the time of the diffusion tensor imaging scan was associated with reduced global fractional anisotropy and increased global axial diffusivity and radial diffusivity values, with small effect sizes. Voxel-wise analysis showed that widespread frontal-subcortical tracts, encompassing regions previously reported as altered in insomnia, were affected. Radial diffusivity findings remained significant after additional correction for demographics, general cognition, health, and lifestyle measures. No significant differences in general cognitive function, executive function, memory, or processing speed were detected between good and poor sleep quality groups. The number of times participants reported poor sleep quality over five time-points spanning a 16-year period was not associated with white matter measures. In conclusion, these data demonstrate that current sleep quality is linked to white matter microstructure. Small effect sizes may limit the extent to which poor sleep is a promising modifiable factor that may maintain, or even improve, white matter microstructure in ageing. Hum Brain Mapp 38:5465-5473, 2017. © 2017 Wiley Periodicals, Inc.
Depression is linked to dementia in older adults.
Depression and dementia are both common conditions in older people, and they frequently occur together. Late life depression affects about 3.0-4.5% of adults aged 65 and older. Depression occurs in up to 20% of patients with Alzheimer’s disease and up to 45% of patients with vascular dementia. Rather than a risk factor, depression with onset in later life is more likely to be either prodromal to dementia or a condition that unmasks pre-existing cognitive impairment by compromising cognitive reserve. Depression can be a psychological response to receiving a diagnosis of dementia. The distinction between depression and early dementia may be particularly difficult. Detailed histories obtained from patients and their relatives as well as longitudinal follow-up are important. Cognitive testing can be very helpful. It is preferable to use a neuropsychological test that is sensitive to subtle cognitive changes and assesses all cognitive domains, such as the Montreal Cognitive Assessment. Older people with depression are at raised risk of dementia and this risk is increased if they have had symptoms for a long time, if their symptoms are severe, where there are multiple (vascular) comorbidities, and where there are structural brain changes including hippocampal atrophy and white matter abnormalities.
The level of cognitive function and recognition of emotions in older adults.
BACKGROUND: The association between cognitive decline and the ability to recognise emotions in interpersonal communication is not well understood. We aimed to investigate the association between cognitive function and the ability to recognise emotions in other people's facial expressions across the full continuum of cognitive capacity. METHODS: Cross-sectional analysis of 4039 participants (3016 men, 1023 women aged 59 to 82 years) in the Whitehall II study. Cognitive function was assessed using a 30-item Mini-Mental State Examination (MMSE), further classified into 8 groups: 30, 29, 28, 27, 26, 25, 24, and <24 (possible dementia) MMSE points. The Facial Expression Recognition Task (FERT) was used to examine recognition of anger, fear, disgust, sadness, and happiness. RESULTS: The multivariable adjusted difference in the percentage of accurate recognition between the highest and lowest MMSE group was 14.9 (95%CI, 11.1-18.7) for anger, 15.5 (11.9-19.2) for fear, 18.5 (15.2-21.8) for disgust, 11.6 (7.3-16.0) for sadness, and 6.3 (3.1-9.4) for happiness. However, recognition of several emotions was reduced already after 1 to 2-point reduction in MMSE and with further points down in MMSE, the recognition worsened at an accelerated rate. CONCLUSIONS: The ability to recognize emotion in facial expressions is affected at an early stage of cognitive impairment and might decline at an accelerated rate with the deterioration of cognitive function. Accurate recognition of happiness seems to be less affected by a severe decline in cognitive performance than recognition of negatively valued emotions.
Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study.
Brain age is becoming a widely applied imaging-based biomarker of neural aging and potential proxy for brain integrity and health. We estimated multimodal and modality-specific brain age in the Whitehall II (WHII) MRI cohort using machine learning and imaging-derived measures of gray matter (GM) morphology, white matter microstructure (WM), and resting state functional connectivity (FC). The results showed that the prediction accuracy improved when multiple imaging modalities were included in the model (R2 = 0.30, 95% CI [0.24, 0.36]). The modality-specific GM and WM models showed similar performance (R2 = 0.22 [0.16, 0.27] and R2 = 0.24 [0.18, 0.30], respectively), while the FC model showed the lowest prediction accuracy (R2 = 0.002 [-0.005, 0.008]), indicating that the FC features were less related to chronological age compared to structural measures. Follow-up analyses showed that FC predictions were similarly low in a matched sub-sample from UK Biobank, and although FC predictions were consistently lower than GM predictions, the accuracy improved with increasing sample size and age range. Cardiovascular risk factors, including high blood pressure, alcohol intake, and stroke risk score, were each associated with brain aging in the WHII cohort. Blood pressure showed a stronger association with white matter compared to gray matter, while no differences in the associations of alcohol intake and stroke risk with these modalities were observed. In conclusion, machine-learning based brain age prediction can reduce the dimensionality of neuroimaging data to provide meaningful biomarkers of individual brain aging. However, model performance depends on study-specific characteristics including sample size and age range, which may cause discrepancies in findings across studies.
Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study.
Loneliness is linked to increased risk for Alzheimer's disease, but little is known about factors potentially contributing to adverse brain health in lonely individuals. In this study, we used data from 24,867 UK Biobank participants to investigate risk factors related to loneliness and estimated brain age based on neuroimaging data. The results showed that on average, individuals who self-reported loneliness on a single yes/no item scored higher on neuroticism, depression, social isolation, and socioeconomic deprivation, performed less physical activity, and had higher BMI compared to individuals who did not report loneliness. In line with studies pointing to a genetic overlap of loneliness with neuroticism and depression, permutation feature importance ranked these factors as the most important for classifying lonely vs. not lonely individuals (ROC AUC = 0.83). While strongly linked to loneliness, neuroticism and depression were not associated with brain age estimates. Conversely, objective social isolation showed a main effect on brain age, and individuals reporting both loneliness and social isolation showed higher brain age relative to controls - as part of a prominent risk profile with elevated scores on socioeconomic deprivation and unhealthy lifestyle behaviours, in addition to neuroticism and depression. While longitudinal studies are required to determine causality, this finding may indicate that the combination of social isolation and a genetic predisposition for loneliness involves a risk for adverse brain health. Importantly, the results underline the complexity in associations between loneliness and adverse health outcomes, where observed risks likely depend on a combination of interlinked variables including genetic as well as social, behavioural, physical, and socioeconomic factors.