Guided visual search is associated with target boosting and distractor suppression in early visual cortex.
Duecker K., Shapiro KL., Hanslmayr S., Griffiths BJ., Pan Y., Wolfe JM., Jensen O.
Visual attention paradigms have revealed that neural excitability in higher-order visual areas is modulated according to a priority map guiding attention towards task-relevant locations. Neural activity in early visual regions, however, has been argued to be modulated based on bottom-up salience. Here, we combined Magnetoencephalography (MEG) and Rapid Invisible Frequency Tagging (RIFT) in a classic visual search paradigm to study feature-guidance in early human visual cortex. Our results demonstrate evidence for both target boosting and distractor suppression when the participants were informed about the task-relevant and -irrelevant colour (guided search) compared to when they were not (unguided search). These results conceptually replicated using both a magnitude-squared coherence approach and a General Linear Model based on a single-trial measure of the RIFT response. The present findings reveal that feature-guidance in visual search affects neuronal excitability as early as primary visual cortex, possibly contributing to a priority-map-based mechanism.