Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Deficient N-methyl-D-aspartate (NMDA) receptor transmission is thought to underlie schizophrenia. An approach for normalizing glutamate neurotransmission by enhancing NMDA receptor transmission is to increase glycine availability by inhibiting the glycine transporter type 1 (GlyT1). This study investigated the relationship between the plasma concentration of the glycine reuptake inhibitor bitopertin (RG1678) and brain GlyT1 occupancy. Healthy male volunteers received up to 175 mg bitopertin once daily, for 10-12 days. Three positron emission tomography scans, preceded by a single intravenous infusion of ∼30 mCi [(11)C]RO5013853, were performed: at baseline, on the last day of bitopertin treatment, and 2 days after drug discontinuation. Eighteen subjects were enrolled. At baseline, regional volume of distribution (V(T)) values were highest in the pons, thalamus, and cerebellum (1.7-2.7 ml/cm(3)) and lowest in cortical areas (∼0.8 ml/cm(3)). V(T) values were reduced to a homogeneous level following administration of 175 mg bitopertin. Occupancy values derived by a two-tissue five-parameter (2T5P) model, a simplified reference tissue model (SRTM), and a pseudoreference tissue model (PRTM) were overall comparable. At steady state, the relationship between bitopertin plasma concentration and GlyT1 occupancy derived by the 2T5P model, SRTM, and PRTM exhibited an EC(50) of ∼190, ∼200, and ∼130 ng/ml, respectively. E(max) was ∼92% independently of the model used. Bitopertin plasma concentration was a reliable predictor of occupancy because the concentration-occupancy relationship was superimposable at steady state and 2 days after drug discontinuation. These data allow understanding of the concentration-occupancy-efficacy relationship of bitopertin and support dose selection of future molecules.

Original publication

DOI

10.1038/npp.2012.212

Type

Journal article

Journal

Neuropsychopharmacology

Publication Date

02/2013

Volume

38

Pages

504 - 512

Keywords

Administration, Intravenous, Adult, Brain, Glycine Plasma Membrane Transport Proteins, Health Status, Humans, Male, Middle Aged, Piperazines, Positron-Emission Tomography, Sulfones, Young Adult