Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Stress echocardiography is widely used to detect coronary artery disease, but little evidence on downstream hospital costs in real-world practice is available. We examined how stress echocardiography accuracy and downstream hospital costs vary across NHS hospitals and identified key factors that affect costs to help inform future clinical planning and guidelines. METHODS: Data on 7636 patients recruited from 31 NHS hospitals within the UK between 2014 and 2020 as part of EVAREST/BSE-NSTEP clinical study, were used. Data included all diagnostic tests, procedures, and hospital admissions for 12 months after a stress echocardiogram and were costed using the NHS national unit costs. A decision tree was built to illustrate the clinical pathway and estimate average downstream hospital costs. Multi-level regression analysis was performed to identify variation in accuracy and costs at both patient, procedural, and hospital level. Linear regression and extrapolation were used to estimate annual hospital cost-savings associated with increasing predictive accuracy at hospital and national level. RESULTS: Stress echocardiography accuracy varied with patient, hospital and operator characteristics. Hypertension, presence of wall motion abnormalities and higher number of hospital cardiology outpatient attendances annually reduced accuracy, adjusted odds ratio of 0.78 (95% CI 0.65 to 0.93), 0.27 (95% CI 0.15 to 0.48), 0.99 (95% CI 0.98 to 0.99) respectively, whereas a prior myocardial infarction, angiotensin receptor blocker medication, and greater operator experience increased accuracy, adjusted odds ratio of 1.77 (95% CI 1.34 to 2.33), 1.64 (95% CI 1.22 to 2.22), and 1.06 (95% CI 1.02 to 1.09) respectively. Average downstream costs were £646 per patient (SD 1796) with significant variation across hospitals. The average downstream costs between the 31 hospitals varied from £384-1730 per patient. False positive and false negative tests were associated with average downstream costs of £1446 (SD £601) and £4192 (SD 3332) respectively, driven by increased non-elective hospital admissions, adjusted odds ratio 2.48 (95% CI 1.08 to 5.66), 21.06 (95% CI 10.41 to 42.59) respectively. We estimated that an increase in accuracy by 1 percentage point could save the NHS in the UK £3.2 million annually. CONCLUSION: This study provides real-world evidence of downstream costs associated with stress echocardiography practice in the UK and estimates how improvements in accuracy could impact healthcare expenditure in the NHS. A real-world downstream costing approach could be adopted more widely in evaluation of imaging tests and interventions to reflect actual value for money and support realistic planning.

Original publication

DOI

10.1186/s44156-023-00020-1

Type

Journal article

Journal

Echo Res Pract

Publication Date

31/05/2023

Volume

10

Keywords

Cardiovascular disease, Coronary artery disease, Cost saving analysis, Health economics, Stress echocardiography