Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Machine learning (ML) is changing the way that medicine is practiced. While already clinically utilised in diagnostic radiology and outcome prediction in intensive care unit, ML approaches in psychiatry remain nascent. Implementing ML algorithms in psychiatry, particularly in the treatment of depression, is significantly more challenging than other areas of medicine in part because of the less demarcated disease nosology and greater variability in practice. Given the current exiguous capacity of clinicians to predict patient and treatment outcomes in depression, there is a significantly greater need for better predictive capability. Early studies have shown promising results. ML predictions were significantly better than chance within the sequenced treatment alternatives to relieve depression (STAR*D) trial (accuracy 64.6%, p 

Original publication

DOI

10.1177/00048674231158267

Type

Journal article

Journal

Aust N Z J Psychiatry

Publication Date

23/02/2023

Keywords

Machine learning, algorithms, anti-depressants, depression, predictions