Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adapting to a constantly changing environment requires the human brain to flexibly switch among many demanding cognitive tasks, processing both specialized and integrated information associated with the activity in functional networks over time. In this study, we investigated the nature of the temporal alternation between segregated and integrated states in the brain during rest and six cognitive tasks using functional MRI. We employed a deep autoencoder to explore the 2D latent space associated with the segregated and integrated states. Our results show that the integrated state occupies less space in the latent space manifold compared to the segregated states. Moreover, the integrated state is characterized by lower entropy of occupancy than the segregated state, suggesting that integration plays a consolidating role, while segregation may serve as cognitive expertness. Comparing rest and the tasks, we found that rest exhibits higher entropy of occupancy, indicating a more random wandering of the mind compared to the expected focus during task performance. Our study demonstrates that both transient, short-lived integrated and segregated states are present during rest and task performance, flexibly switching between them, with integration serving as information compression and segregation related to information specialization.

Original publication

DOI

10.1002/hbm.26511

Type

Journal article

Journal

Hum Brain Mapp

Publication Date

17/10/2023

Keywords

HCP data set, brain states, fMRI, integration, latent space, manifold, segregation