Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor.
Sun D., McNicol A., James AA., Peng Z.
Excessive platelet activation and accumulation can lead to vessel occlusion and thus present major therapeutic challenges in cardiovascular medicine. Apyrase, an ecto-enzyme with ADPase and ATPase activities, rapidly metabolizes ADP and ATP released from platelets and endothelial cells, thereby reducing platelet activation and recruitment. In the present study, we expressed a 68-kDa recombinant mosquito (Aedes aegypti) salivary apyrase using a baculovirus/insect cell expression system and purified it to homogeneity using anion-exchange chromatography on a large scale. A yield of 18 mg of purified recombinant apyrase was obtained from 1 litre of the medium. Kinetic analysis indicated that the recombinant apyrase had a K(m) of 12.5 microM for ADP and a K(m) of 15.0 microM for ATP. The recombinant apyrase inhibited ADP-, collagen- and thrombin-induced human platelet aggregation in a dose-dependent manner, indicating that the recombinant protein retained nucleotidase activity in a whole cell system, which suggests that it may serve as a therapeutic agent for inhibition of platelet-mediated thrombosis.