Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Cardiometabolic dysfunction is common in young people with psychosis. Recently, the Psychosis Metabolic Risk Calculator (PsyMetRiC) was developed and externally validated in the UK, predicting up-to six-year risk of metabolic syndrome (MetS) from routinely collected data. The full-model includes age, sex, ethnicity, body-mass index, smoking status, prescription of metabolically-active antipsychotic medication, high-density lipoprotein, and triglyceride concentrations; the partial-model excludes biochemical predictors. METHODS: To move toward a future internationally-useful tool, we externally validated PsyMetRiC in two independent European samples. We used data from the PsyMetab (Lausanne, Switzerland) and PAFIP (Cantabria, Spain) cohorts, including participants aged 16-35y without MetS at baseline who had 1-6y follow-up. Predictive performance was assessed primarily via discrimination (C-statistic), calibration (calibration plots), and decision curve analysis. Site-specific recalibration was considered. FINDINGS: We included 1024 participants (PsyMetab n=558, male=62%, outcome prevalence=19%, mean follow-up=2.48y; PAFIP n=466, male=65%, outcome prevalence=14%, mean follow-up=2.59y). Discrimination was better in the full- compared with partial-model (PsyMetab=full-model C=0.73, 95% C.I., 0.68-0.79, partial-model C=0.68, 95% C.I., 0.62-0.74; PAFIP=full-model C=0.72, 95% C.I., 0.66-0.78; partial-model C=0.66, 95% C.I., 0.60-0.71). As expected, calibration plots revealed varying degrees of miscalibration, which recovered following site-specific recalibration. PsyMetRiC showed net benefit in both new cohorts, more so after recalibration. INTERPRETATION: The study provides evidence of PsyMetRiC's generalizability in Western Europe, although further local and international validation studies are required. In future, PsyMetRiC could help clinicians internationally to identify young people with psychosis who are at higher cardiometabolic risk, so interventions can be directed effectively to reduce long-term morbidity and mortality. FUNDING: NIHR Cambridge Biomedical Research Centre (BRC-1215-20014); The Wellcome Trust (201486/Z/16/Z); Swiss National Research Foundation (320030-120686, 324730- 144064, and 320030-173211); The Carlos III Health Institute (CM20/00015, FIS00/3095, PI020499, PI050427, and PI060507); IDIVAL (INT/A21/10 and INT/A20/04); The Andalusian Regional Government (A1-0055-2020 and A1-0005-2021); SENY Fundacion Research (2005-0308007); Fundacion Marques de Valdecilla (A/02/07, API07/011); Ministry of Economy and Competitiveness and the European Fund for Regional Development (SAF2016-76046-R and SAF2013-46292-R).For the Spanish and French translation of the abstract see Supplementary Materials section.

Original publication

DOI

10.1016/j.lanepe.2022.100493

Type

Journal article

Journal

Lancet Reg Health Eur

Publication Date

11/2022

Volume

22

Keywords

Early Intervention, International Validation, Metabolic Syndrome, PAFIP, PsyMetab, Psychosis, Risk Prediction Algorithm