Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus.
Hagan CC., Graham JME., Tait R., Widmer B., van Nieuwenhuizen AO., Ooi C., Whitaker KJ., Simas T., Bullmore ET., Lennox BR., Sahakian BJ., Goodyer IM., Suckling J.
OBJECTIVE: There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. METHOD: Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. RESULTS: Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. CONCLUSIONS: The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain.