Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015 World Obesity. Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has strong pleiotropic effects on adiposity and adiposity-independent pathological pathways that leads to increased mortality. To investigate this further, we conducted a meta-analysis of similar data from 34 longitudinal studies including 169,551 adult Caucasians among whom 27,100 died during follow-up. Linear regression showed that the minor allele of the FTO SNP was associated with greater BMI (n=169,551; 0.32kgm-2; 95% CI 0.28-0.32, P<1×10-32), WC (n=152,631; 0.76cm; 0.68-0.84, P<1×10-32) and FMI (n=48,192; 0.17kgm-2; 0.13-0.22, P=1.0×10-13). Cox proportional hazard regression analyses for mortality showed that the hazards ratio (HR) for the minor allele of the FTO SNPs was 1.02 (1.00-1.04, P=0.097), but the apparent excess risk was eliminated after adjustment for BMI and WC (HR: 1.00; 0.98-1.03, P=0.662) and for FMI (HR: 1.00; 0.96-1.04, P=0.932). In conclusion, this study does not support that the FTO SNP is associated with all-cause mortality independently of the adiposity phenotypes.

Original publication

DOI

10.1111/obr.12263

Type

Journal article

Journal

Obesity Reviews

Publication Date

01/04/2015

Volume

16

Pages

327 - 340