Abnormal neural oscillations in schizotypy during a visual working memory task: support for a deficient top-down network?
Koychev I., Deakin JFW., Haenschel C., El-Deredy W.
Neural oscillatory deficits have been proposed to be a core feature of schizophrenia spectrum disorders. In this study we aimed to confirm this by examining early evoked oscillatory patterns in the EEG theta, beta and gamma bands in individuals with high schizotypal personality trait scores. We carried out an event-related experiment using a computerised delayed matching to sample working memory (WM) task on a sample of volunteers scoring high or low on the Schizotypal Personality Questionnaire (SPQ). Phase-locking factor (PLF), a measure of network synchronisation, was reduced in the beta and gamma bands in two distinct topographical regions (fronto-central and centraloccipital). In addition, signal power in the beta band was decreased in the high schizotypy group in the same fronto-occipital network. These findings suggest that abnormalities in functional connectivity, already described in schizophrenia, extend to schizotypy. Further, the pattern and latency of the altered neural oscillations in the high schizotypy group suggests a deficient modulation of the sensory processing by higher-order structures. Such top-down deficits have been reported in schizophrenia and this data supports the idea that top-down dysfunction is a vulnerability trait that is independent of disease course, medication or symptom severity.