Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have used multivariate data analysis, more specifically orthogonal partial least squares to latent structures (OPLS) analysis, to discriminate between Alzheimer's disease (AD), mild cognitive impairment (MCI) and elderly control subjects combining both regional and global magnetic resonance imaging (MRI) volumetric measures. In this study, 117 AD patients, 122 MCI patients and 112 control subjects (from the AddNeuroMed study) were included. High-resolution sagittal 3D MP-RAGE datasets were acquired from each subject. Automated regional segmentation and manual outlining of the hippocampus were performed for each image. Altogether this yielded volumes of 24 different anatomically defined structures which were used for OPLS analysis. 17 randomly selected AD patients, 12 randomly selected control subjects and the 22 MCI subjects who converted to AD at 1-year follow up were excluded from the initial OPLS analysis to provide a small external test set for model validation. Comparing AD with controls we found a sensitivity of 87% and a specificity of 90% using hippocampal measures alone. Combining both global and regional measures resulted in a sensitivity of 90% and a specificity of 94%. This increase in sensitivity and specificity resulted in an increase of the positive likelihood ratio from 9 to 15. From the external test set, the model predicted 82% of the AD patients and 83% of the control subjects correctly. Finally, 73% of the MCI subjects which converted to AD at 1 year follow-up were shown to resemble AD patients more closely than controls. This method shows potential for distinguishing between different patient groups. Combining the different MRI measures together resulted in a significantly better classification than using them separately. OPLS also shows potential for predicting conversion from MCI to AD.

Original publication

DOI

10.1016/j.neuroimage.2010.08.044

Type

Journal article

Journal

Neuroimage

Publication Date

15/01/2011

Volume

54

Pages

1178 - 1187

Keywords

Aged, Alzheimer Disease, Cognition Disorders, Female, Hippocampus, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male, Multivariate Analysis, Sensitivity and Specificity