Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A general theory of brain function has to be able to explain local and non-local network computations over space and time. We propose a new framework to capture the key principles of how local activity influences global computation, i.e., describing the propagation of information and thus the broadness of communication driven by local activity. More specifically, we consider the diversity in space (nodes or brain regions) over time using the concept of intrinsic ignition, which are naturally occurring intrinsic perturbations reflecting the capability of a given brain area to propagate neuronal activity to other regions in a given brain state. Characterizing the profile of intrinsic ignition for a given brain state provides insight into the precise nature of hierarchical information processing. Combining this data-driven method with a causal whole-brain computational model can provide novel insights into the imbalance of brain states found in neuropsychiatric disorders.

Original publication

DOI

10.1016/j.neuron.2017.03.028

Type

Journal article

Journal

Neuron

Publication Date

06/2017

Volume

94

Pages

961 - 968

Addresses

Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton VIC 3800, Australia.

Keywords

Brain, Humans, Mental Processes, Models, Neurological