Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Psychotic disorders are common and disabling. Overlaps in clinical course in addition to epidemiological and genetic associations raise the possibility that autoimmune mechanisms may underlie some psychoses, potentially offering novel therapeutic approaches. Several immune loci including the major histocompatibility complex and B-cell markers CD19 and CD20 achieve genome-wide significance in schizophrenia. Emerging evidence suggests a potential role via neurodevelopment in addition to classical immune pathways. Additionally, lymphocyte biology is increasingly investigated. Some reports note raised peripheral CD19+ and reduced CD3+ lymphocyte counts, with altered CD4 : CD8 ratios in acute psychosis. Also, post-mortem studies have found CD3+ and CD20+ lymphocyte infiltration in brain regions that are of functional relevance to psychosis. More specifically, the recent paradigm of neuronal surface antibody-mediated (NSAb) central nervous system disease provides an antigen-specific model linking adaptive autoimmunity to psychopathology. NSAbs bind extracellular epitopes of signalling molecules that are classically implicated in psychosis such as NMDA and GABA receptors. This interaction may cause circuit dysfunction leading to psychosis among other neurological features in patients with autoimmune encephalitis. The detection of these cases is crucial as autoimmune encephalitis is ameliorated by commonly available immunotherapies. Meanwhile, the prevalence and relevance of these antibodies in people with isolated psychotic disorders is an area of emerging scientific and clinical interest. Collaborative efforts to achieve larger sample sizes, comparison of assay platforms, and placebo-controlled randomized clinical trials are now needed to establish an autoimmune contribution to psychosis.

Original publication

DOI

10.1111/imm.12795

Type

Journal article

Journal

Immunology

Publication Date

11/2017

Volume

152

Pages

388 - 401

Addresses

Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.

Keywords

Brain, Neurons, Lymphocytes, Immune System, Animals, Humans, Autoimmune Diseases, Disease Models, Animal, Genetic Predisposition to Disease, Antipsychotic Agents, Immunologic Factors, Autoantibodies, Adoptive Transfer, Risk Factors, Psychotic Disorders, Autoimmunity, Phenotype